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Aggregation by very large numbers 
Computer models of aggregating systems have thrown a useful light on physical processes in the past 
few years. But too much computer power may make them more intricate than instructive. 

THE neater the model, the more easily it is 
elaborated, and made complicated. That 
simple truth, always apparent, has been 
more evident than ever since computer 
power became more easily and cheaply 
available. The model of simple harmonic 
motion represented by the idealized sim
ple pendulum could, no doubt, be made 
too complicated for a Cray computer to 
handle by the wooden elaboration of 
enough complexity. 

Much the same, it seems, is now hap
pening to the simple model of diffusion
limited aggregation first put forward four 
years ago by T. Witten and L.M. Sander 
(Phys. Rev. Lett. 47, 1400; 1981). The ori
ginal idea was simple, that of constructing 
a model to account for processes such as 
crystal growth whose rate is determined 
by the diffusion of aggregating particles 
through solution towards the growing 
crystal. 

The simple version of the model is that 
in which aggregation takes place on a two
dimensional lattice. Particles are allowed 
to "diffuse" from the periphery of a piece 
of the lattice towards a central point by 
supposing that they move randomly, one 
lattice step at a time. It is necessary to 
specify the set of rules that determine 
when a particle will stick to the growing 
aggregate; most simply, it can be required 
to stay where it is whenever it reaches a 
lattice-site that is immediately adjacent to 
one already occupied. 

Several important demonstrations have 
been possible with this simple, almost 
crude, model. Not least, for example, it 
turns out that aggregates constructed in 
this way are fractal structures; the num
bers of particles they contain increase 
monotonically with increasing radius, but 
by some power of the radius which is Jess 
than 2.0, the value expected for a struc
ture filling all the dimensions available in a 
plane. The value of the exponent in the 
power Jaw with radius is now the familiar 
fractional dimension. The fact that just 
such behaviour is observed when dendritic 
solid structures grow from, say, solution, 
or when ice crystals form from the vapour, 
justifies the wide use made of the model 
and its elaborations in the past few years. 

One side benefit of this simple model is 
that it lends itself easily to computer cal
culations. Tell the machine the rules, and 
it will replicate them indefinitely. So it has 
come about that a small army of ingenious 
people has been trying variants of the 
Witten-Sanders model. More than two 

dimensions? No problem, except for the 
cost of computer time. What is the rate at 
which smaller aggregates will stick 
together to form larger structures? Again 
there is no problem once the rules are 
specified. The fact that the Witten
Sanders model also serves to account for 
phenomena other than diffusion-limited 
aggregation, percolation for example, has 
made it even more popular. 

Naturally, there has been a great deal of 
interest in attempts to make the model 
realistic. Obviously, in a model growing 
by random aggregation, there is a possibil
ity that loops will form between one part 
of the structure and another, thus exclud
ing a large part of the accessible space 
from occupation. Are these physically 
realistic conditions, or should they be ex
cluded as rare configurations with extra
ordinary implications? 

Then the simplest set of rules, requiring 
that particles should stick to an aggregate 
whenever they reach a neighbouring site, 
makes no allowance for the likelihood that 
different sites might be occupied with 
different affinity. That is why some inves
tigators have set out to calculate the prob
ability that various sites will· be occupied 
by running the random walk backwards. 

More recently, attempts have been 
made to construct still more realistic mod
els of aggregation by changing the rules, 
allowing a particle either to stick at the 
first nearest-neighbour site it reaches or, 
alternatively, to move to a neighbouring 
occupiable site, perhaps because such a 
site may be energetically more favour
able. (Two neighbours are better than 
one.) There are reasons to suppose that 
the results of such calculations may enjoy 
a degree of realism (seeP. Meakin and R. 
Jullien,J. Phys. 46, 1543, 1985). 

The most recent development is an 
attempt to construct a kind of equilibrium 
model of aggregation. The idea (due toR. 
Botet and R. Jullien of the University of 
Paris-Sud (Phys. Rev. Lett. 55, 1943; 
1985) is to begin with an aggregate of some 
kind and arrange that particles may escape 
from peripheral sites with single nearest 
neighbours, wander about by random 
walking (again on a two-dimensional lat
tice) and then stick to an aggregation site 
when next they reach it. If the wandering 
particle should get too far away, say to the 
circumference of a distant circle, it will be 
captured and released again at a random 
point. 

Technically, there is no doubt that the 

aggregating particle is stable. The number 
of particles is essentially constant; the 
rules specify that there can never be more 
than one particle on its travels. So what do 
the calculations show about the way in 
which the shapes of aggregates change 
with the repeated release and recapture of 
particles at the periphery? 

First, for a specified number of particles 
in the initial aggregate, there is a final 
state with recognizable characteristics de
termined only by the number. For exam
ple, starting with a cluster of 100 particles 
allowed to randomize themselves by these 
formal rules, Botet and Jullien show that 
the radius of gyration of the end result is 
roughly eight unit lattice spaces. Attentu
ated structures (say, a string of 100 parti
cles in a straight line) will finish up as a 
spindly structure. So too will structures 
that begin as compact clusters, with no 
spaces between occupied sites. 

The obvious disappointment is that the 
model, as specified, is not a model for 
aggregates in equilibrium, but instead a 
model for an aggregate whose size has 
been arbitrarily fixed. Put simply, it is a 
model that presupposes that disaggrega
tion is not an option for the system, or that 
the energy of the attachment of particles 
to aggregate is infinite. In the circum
stances, especially because there can be 
no attempt to distinguish between the 
probability with which different kinds of 
clusters can occur, which is the same as 
saying that the energy of all configurations 
is the same. In other words, the model is a 
long way from being a model of equilib
rium aggregation. 

That does not. of course, imply that the 
calculations are without interest. But it is 
not surprising that the fractal dimensions 
of aggregates held constant under these 
conditions should be less than those of the 
aggregates formed in the first place by the 
Witten-Sanders process (1.54 against 
1. 70). Nor is it remarkable that some con
figurations built from very small aggre
gates (of, say, eight particles) should 
occur less frequently than sheer chance 
dictates. The promised calculation of what 
happens when larger aggregates split in 
two, by the severance of a bond chosen at 
random, may however be more directly 
relevant to speculation about the way in 
which aggregates rearrange themselves. 
The pity is that, for the time being, there 
are no usable analytical methods of mak
ing progress with these problems. 
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