Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal

A Corrigendum to this article was published on 01 December 1985

Abstract

Pairing of human X and Y chromosomes during meiosis initiates within the so–called pairing region at the telomeres or the chromosome short arms. Using DNA from the Y chromosome we found sequence homology in the pairing region of the human X and Y chromosomes. This DNA is telomeric, contains repetitive sequences and is highly polymorphic in the population. The polymorphism has allowed family studies which show the sequences are not inherited as though linked to the sex chromosomes. This ‘pseudoautosoma’ pattern of inheritance points to an obligate recombination in the pairing region of the sex chromosomes during male meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blackburn, E. H. & Szostak, J. W. A. Rev. Biochem. 53, 163 (1984).

    Article  CAS  Google Scholar 

  2. Saiga, H. & Edstrom, J.-E. EMBO J. 4, 799–804 (1985).

    Article  CAS  Google Scholar 

  3. Rubin, G. Cold Spring Harb. Symp. quant. Biol. 42, 1041–1046 (1976).

    Article  Google Scholar 

  4. Pardue, M. L. Cold Spring Harb. Symp. quant. Biol. 38, 475–482 (1974).

    Article  CAS  Google Scholar 

  5. Jones, J. D. G. & Flavell, R. B. Cold Spring Harb. Symp. quant. Biol. 47, 1209–1213 (1982).

    Article  CAS  Google Scholar 

  6. Solari, A. J. Chromosoma 81, 315–337 (1980).

    Article  CAS  Google Scholar 

  7. Chandley, A. C. et al. Cytogenet. Cell Genet. 38, 241–247 (1984).

    Article  CAS  Google Scholar 

  8. Race, R. R. & Sanger, P. Blood Groups in Man 6th edn (Blackwell, Oxford, 1975).

    Google Scholar 

  9. Mohandas, T. et al. Proc. natn. Acad. Sci. U.S.A. 76, 5779–5783 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Burgoyne, P. S. Hum. Genet. 61, 85–90 (1982).

    Article  CAS  Google Scholar 

  11. Polani, P. E. Hum. Genet. 60, 207–211 (1982).

    Article  CAS  Google Scholar 

  12. Ferguson-Smith, M. J. med. Genet. 2, 142–156 (1965).

    Article  CAS  Google Scholar 

  13. Page, D. C. et al. Nature 311, 119–123 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Koenig, M. et al. Nucleic Acids Res. 12, 4097–4109 (1984).

    Article  CAS  Google Scholar 

  15. Cooke, H. J. et al. Nature 311, 259–271 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Goodfellow, P. N. & Tippet, P. Nature 289, 404–405 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Singh, L. & Jones, K. W. Cell 28, 205–216 (1982).

    Article  CAS  Google Scholar 

  18. Evans, E. P. et al. Nature 300, 443–445 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Keitges, E., Rivest, E., Siniscalco, M. & Gartles, S. M. Nature 315, 226–227 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Markus, M. et al. Nature 262, 63–65 (1976).

    Article  ADS  Google Scholar 

  21. Bird, A. P. et al. Cell 40, 91–99 (1985).

    Article  CAS  Google Scholar 

  22. McKeon, C. et al. Proc. natn. Acad. Sci. U.S.A. 80, 203–210 (1982).

    Google Scholar 

  23. Stein, R. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2423–2426 (1983).

    ADS  Google Scholar 

  24. Melton, D. W. et al. Proc. natn. Acad. Sci. U.S.A. 81, 2147–2151 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Burke, R. D. et al. Molec. Cell Biol. 5, 576–581 (1985).

    Article  Google Scholar 

  26. Bernards, A. et al. Nature 303, 592–597 (1985).

    Article  ADS  Google Scholar 

  27. Fritsch, E. F. et al. Nature 279, 598–603 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Jeffreys, A. J. et al. Nature 281, 606–608 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Singer, M. F. Int. Rev. Cytol. 76, 67–112 (1982).

    Article  CAS  Google Scholar 

  30. Kilpatrick, M. W. et al. Nucleic Acids Res. 11, 3811–3822 (1983).

    Article  CAS  Google Scholar 

  31. Jeffreys, A. J. et al. Nature 314, 67–72 (1985).

    Article  ADS  CAS  Google Scholar 

  32. Shampay, J. et al. Nature 310, 154–156 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Chan, C. S. M. & Tye, B. K. Cell 33, 563–573 (1983).

    Article  CAS  Google Scholar 

  34. Horowitz, H. et al. Molec. Cell Biol. 4, 2509–2517 (1984).

    Article  CAS  Google Scholar 

  35. Murray, A. W. & Szostak, J. W. Nature 305, 189–193 (1983).

    Article  ADS  CAS  Google Scholar 

  36. Surosky, R. T. & Tye, B. K. Proc. natn. Acad. Sci. U.S.A. 82, 2106–2110 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Ashley, T. Hum. Genet. 67, 372–377 (1984).

    Article  CAS  Google Scholar 

  38. Schwartz, D. C. & Cantor, C. R. Cell 37, 67–75 (1984).

    Article  CAS  Google Scholar 

  39. Magenis, R. E. et al. Hum. Genet. 62, 271–276 (1982).

    Article  CAS  Google Scholar 

  40. Guellaen, G. et al. Nature 307, 172–173 (1984).

    Article  ADS  CAS  Google Scholar 

  41. Maniatis, T. et al. Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  42. Ish-Horowits, D. & Burke, J. F. Nucleic Acids Res. 9, 2989–2999 (1981).

    Article  Google Scholar 

  43. Elder, J. & Southern, E. M. Analyt. Biochem. 128, 227–321 (1981).

    Article  Google Scholar 

  44. Vieira, J. & Messing, J. Gene 19, 259–267 (1982).

    Article  CAS  Google Scholar 

  45. Wolfe, J. et al. J. molec. Biol. 182, 477–486 (1985).

    Article  CAS  Google Scholar 

  46. Lindgren, V. et al. Science 226, 477–486 (1985).

    Google Scholar 

  47. Curry, C. J. R. et al. New Engl. J. Med. 311, 1010–1015 (1984).

    Article  CAS  Google Scholar 

  48. Lund, E. et al. Molec. Cell Biol. 3, 2211–2220 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, H., Brown, W. & Rappold, G. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317, 687–692 (1985). https://doi.org/10.1038/317687a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317687a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing