Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fossil packrat middens and the tandem accelerator mass spectrometer

Abstract

Analyses of well-preserved plant remains from ancient packrat (Neotoma) middens have yielded much information on the history of vegetation, fauna and climate from the more arid portions of North America over the past 40,000 years1,2. In most of the modern deserts, woodland or forest communities were present during the last glacial age, the Wisconsin. Radiocarbon dating of packrat midden assemblages from a single cave or from several nearby sites in a homogeneous local area can yield a detailed, local vegetation chronology for many thousands of years from within 30–50 m on the rocky slopes in front of the dry rock shelters3,4. The development of radiocarbon dating using the tandem accelerator mass spectrometer (TAMS) allows direct dating of very small samples. Here we present 20 examples of TAMS radiocarbon dates on packrat midden materials to illustrate their usefulness in testing anomalous mixtures of species in Ice Age communities, understanding the details of plant migrations, and refining Wisconsin and Holocene time boundaries based on range changes of important plant species (Table 1, Fig. 1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Irka Hajdas, Philippa Ascough, … Minoru Yoneda

References

  1. Van Devender, T. R. & Spaulding, W. G. Science 204, 701–710 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Spaulding, W. G., Leopold, E. B. & Van Devender, T. R. in The Late Pleistocene (ed. Porter, S. C.) 259–293 (University of Minnesota Press, 1983).

    Google Scholar 

  3. Spaulding, W. G. US geol. Surv. Open-File Rep. 83–535 (1983).

  4. Van Devender, T. R., Betancourt, J. L. & Wimberly, M. Quat. Res. 22, 344–360 (1984).

    Article  Google Scholar 

  5. Webb, R. H. Radiocarbon 28, 1–8 (1985).

    Article  Google Scholar 

  6. Jull, A. J. T., Donahue, D. J. & Zabel, T. H. Nucl. Instrum. Meth Phys. Res. 218, 509–514 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Taylor, R. E., Donahue, D. J., Zabel, T. H., Damon, P. E. & Jull, A. J. T. in ACS Advances in Chemistry Series No. 205 (ed. Lambert, J. B.) 333–356 (American Chemical Society, Washington, D.C., 1984).

    Google Scholar 

  8. Mead, J. I., Thompson, R. S. & Long, A. Radiocarbon 20, 171–191 (1978).

    Article  Google Scholar 

  9. Van Devender, T. R. Quat. Res. 8, 236–237 (1977).

    Article  Google Scholar 

  10. Wells, P. V. Quat. Res. 6, 223–248 (1976).

    Article  Google Scholar 

  11. Wells, P. V. & Hunziker, J. H. Ann. Mo. bot. Gdn 63, 843–861 (1976).

    Article  Google Scholar 

  12. Thompson, R. S. thesis, Univ. Arizona (1984).

  13. Cole, K. L. Science 217, 1142–1145 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Van Devender, T. R., Freeman, C. E. & Worthington, R. D. Southwest. Nat. 23, 289–302 (1978).

    Article  Google Scholar 

  15. Lanner, R. M. & Van Devender, T. R. Quat. Res. 15, 278–290 (1981).

    Article  Google Scholar 

  16. King, J. E. & Van Devender, T. R. Quat. Res. 8, 191–204 (1977).

    Article  Google Scholar 

  17. Van Devender, T. R. & Mead, J. I. Copeia 1978, 464–475 (1978).

    Article  Google Scholar 

  18. Mead, J. I., Van Devender, T. R. & Cole, K. L. J. Mammal. 64, 173–180 (1983).

    Article  Google Scholar 

  19. Van Devender, T. R. in Proc. 2nd Chihuahuan Desert Symp. (eds. Barlow, J. C., Timmerman, B. N. & Powell, A. M.) (Chihuahuan Desert Research Institute, Alpine, Texas, in the press).

  20. Van Devender, T. R. Science 198, 189–192 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Betancourt, J. L., Long, A., Donahue, D. J., Jull, A. J. T. & Zabel, T. H. Nature 311, 653–655 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Thompson, R. S. & Mead, J. I. Quat. Res. 17, 39–55 (1982).

    Article  Google Scholar 

  23. Turnage, W. V. & Hinckley, A. L. Ecol. Monogr. 8, 529–550 (1938).

    Article  Google Scholar 

  24. Haury, E. W. The Stratigraphy and Archaeology of Ventana Cave (University of Arizona Press, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Devender, T., Martin, P., Thompson, R. et al. Fossil packrat middens and the tandem accelerator mass spectrometer. Nature 317, 610–613 (1985). https://doi.org/10.1038/317610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing