Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cosmological experiments in superfluid helium?

Abstract

Symmetry breaking phase transitions occurring in the early Universe are expected to leave behind long-lived topologically stable structures such as monopoles, strings or domain walls1–6. Here I discuss the analogy between cosmological strings and vortex lines in the superfluid, and suggest a cryogenic experiment which tests key elements of the cosmological scenario for string formation. In a superfluid obtained through a rapid pressure quench, the phase of the Bose condensate wavefunction—the 4He analogue of the broken symmetry of the field-theoretic vacuum—will be chosen randomly in domains of some characteristic size d. When the quench is performed in an annulus of circumference C the typical value of the phase mismatch around the loop will be (C/d)1/2. The resulting phase gradient can foe sufficiently large to cause the superfluid to flow with a measurable (mm s−1), randomly directed velocity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zel'dovich, Ya. B., Kobzarev, I. Yu. & Okun, L. B. Zh. éksp. teor. Fiz. 67, 3–11 (1974); Soviet Phys. JETP 67, 401–409 (1975).

    ADS  CAS  Google Scholar 

  2. Kibble, T. W. B. J. Phys. A9, 1387–1398 (1976).

    ADS  Google Scholar 

  3. Linde, A. D. Rep. Prog. Phys. 42, 389–437 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Vilenkin, A. Phys. Rev. D24, 2082–2089 (1981).

    ADS  CAS  Google Scholar 

  5. Albrecht, A. & Turok, N. Phys. Rev. Lett. 54, 1868–1871 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Kibble, T. W. B. Phys. Rep. 67, 183–199 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Ginzburg, V. L. & Pitaevskii, L. P. Zh. éksp. teor. Fiz. 34, 1240–1247 (1958); Soviet Phys. JETP 34, 858–863 (1958).

    Google Scholar 

  8. Lifshits, E. M. & Pitaevskii, L. P. Landau and Lifshits Course in Theoretical Physics, Section III (Pergamon, Oxford, 1980).

    Google Scholar 

  9. Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity (Wiley, New York, 1974).

    MATH  Google Scholar 

  10. Aitchison, I. J. R. & Hey, A. J. G. Gauge Theories in Particle Physics (Hilger, Bristol, 1982).

    MATH  Google Scholar 

  11. Nielsen, H. B. & Olesen, P. Nucl. Phys. B61, 45–55 (1973).

    Article  ADS  Google Scholar 

  12. Onsager, L. Nuovo Cim. 6, Supp. 2, 249 (1949).

    Article  MathSciNet  Google Scholar 

  13. Feynman, R. P. in Progress in Low Temperature Physics (ed. Goiter, C. J.) Vol. 1, Ch. II (North Holland, Amsterdam, 1956).

    Google Scholar 

  14. Vinen, W. F. Proc. R. Soc. A240, 114–128 (1957).

    ADS  CAS  Google Scholar 

  15. Vinen, W. F. Proc. R. Soc. A260, 218–230 (1961).

    ADS  CAS  Google Scholar 

  16. Ahlers, G. in The Physics of Liquid and Solid Helium Vol. 2, (eds Bennemann, K. H. & Ketterson, J. B.) Ch. II (Wiley, New York, 1976).

    Google Scholar 

  17. Zurek, W. H. in Proc. a. Meet. Particle and Field Theory Division of the Am. phys. Soc., Santa Fe (eds Goldman, T. & Nieto, M. M.) 479 (World Scientific, Singapore, 1985).

    Google Scholar 

  18. Wheeler, J. A. & Zurek, W. H. (eds) Quantum Theory and Measurement Ch. III (Princeton University Press, 1983).

  19. Reppy, J. D. & Depatie, D. Phys. Rev. Lett. 12, 187–189 (1964).

    Article  ADS  CAS  Google Scholar 

  20. Ferrell, R. A., Menyhard, N., Schmidt, H., Schwabl, F. & Szepfalusy, Ann. Phys. 47, 565–613 (1961).

    Article  ADS  Google Scholar 

  21. Halperin, B. I. & Hohenberg, P. C. Phys. Rev. 177, 952–971 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zurek, W. Cosmological experiments in superfluid helium?. Nature 317, 505–508 (1985). https://doi.org/10.1038/317505a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317505a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing