Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates

Abstract

The per locus has a fundamental involvement in the expression of biological rhythms in Drosophila. Mutations at this locus can shorten, lengthen or eliminate a variety of rhythmic activities that range from circadian behaviours, exemplified by eclosion and locomotor activities1,2, to short-period behaviour such as the 55-s rhythm of courtship song3. DNA from the per locus has been cloned4–7, and we have used P-element-mediated DNA transformation to establish that a 7.1-kilobase (kb) HindIII fragment contains a functional copy of the gene. This transforming DNA contains a single transcription unit which gives rise to a 4.5-kb poly(A)+ RNA5. Here we report the results of a search for sequences homologous to the per locus DNA in the genomic DNA of several species of vertebrates. An unusual, tandemly repeated sequence forming a portion of the 4.5-kb per transcript is homologous to DNA in chicken, mouse and man. Cloned DNAs from the mouse and Drosophila are related by long, uninterrupted tandem repetitions of the sequence ACNGGN. At the per locus, these tandem repeats are predicted to code for poly(Thr-Gly) tracts up to 48 amino acids long. These repeated sequences are also transcribed in the mouse. Several long tracts of poIy(Thr-Gly) appear to be encoded by DNA cloned from the mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Konopka, R. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 68, 2112–2116 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Young, M. W. & Judd, B. H. Genetics 88, 723–742 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kyriacou, C. P. & Hall, J. C. Proc. natn. Acad. Sci. U.S.A. 77, 6729–6733 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Bargiello, T. A. & Young, M. W. Proc. natn. Acad. Sci. U.S.A. 81, 2142–2146 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Bargiello, T. A., Jackson, F. R. & Young, M. W. Nature 312, 752–754 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Reddy, P. et al. Cell 38, 701–710 (1984).

    Article  CAS  Google Scholar 

  7. Zehring, W. A. et al. Cell 39, 369–376 (1984).

    Article  CAS  Google Scholar 

  8. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  9. Dame, J. B. et al. Science 225, 593–599 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Godson, G. N., Ellis, J., Svec, P., Schlesinger, D. H. & Nussenzweig, V. Nature 305, 29–33 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Ravetch, J. V., Kochan, J. & Perkins, M. Science 227, 1593–1597 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Kurjan, J. & Herskowitz, I. Cell 30, 933–943 (1982).

    Article  CAS  Google Scholar 

  13. Dworkin-Rastl, E., Shrutkowski, A. & Dworkin, M. B. Cell 39, 321–325 (1984).

    Article  CAS  Google Scholar 

  14. Tartof, K. Cold Spring Harb. Symp. quant. Biol. 38, 491–500 (1974).

    Article  CAS  Google Scholar 

  15. Smith, G. P. Cold Spring Harb. Symp. quant. Biol. 38, 507–513 (1974).

    Article  CAS  Google Scholar 

  16. Dover, G. Nature 299, 111–117 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Bourdon, M. A., Oldberg, A., Pierschbacher, M. & Ruoslahti, E. Proc. natn. Acad. Sci. U.S.A. 82, 1321–1325 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Dale, R. M. K., McClure, B. A. & Houchins, J. P. Plasmid 13, 31–40 (1985).

    Article  CAS  Google Scholar 

  19. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  Google Scholar 

  20. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Acad. Sci. U.S.A. 80, 3963–3965 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, HS., Bargiello, T., Clark, B. et al. An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature 317, 445–448 (1985). https://doi.org/10.1038/317445a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317445a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing