Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global warming on Triton

Abstract

Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature1,2,3. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years—significantly faster than predicted by any published frost model for Triton2,3. Our result suggests that permanent polar caps on Triton play a dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triton occultation light curves from the HST.
Figure 2: Triton's global warming.

Similar content being viewed by others

References

  1. Spencer, J. R. Nitrogen frost migration on Triton: a historical model. Geophys. Res. Lett. 17, 1769–1772 (1990).

    Article  ADS  Google Scholar 

  2. Hansen, C. J. & Paige, D. A. Athermal model for the seasonal nitrogen cycle on Triton. Icarus 99, 273–288 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Spencer, J. R. & Moore, J. M. The influence of thermal inertia on temperatures and frost stability on Triton. Icarus 99, 261–272 (1992).

    Article  ADS  Google Scholar 

  4. McDonald, S. W. & Elliot, J. L. Triton stellar occultation candidates: 1995–1999. Astron. J. 109, 1352–1362 (1995).

    Article  ADS  Google Scholar 

  5. Holfeltz, S. T. FGS Instrument Handbook(Space Telescope Science Institute, Baltimore, 1996).

    Google Scholar 

  6. Elliot, J. L. et al. Occultation of ε Geminorum by Mars. II. The structure and extinction of the Martian upper atmosphere. Astrophys. J. 217, 661–679 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Elliot, J. L., Stansberry, J. A., Olkin, C. B., Agner, M. A. & Davies, M. E. Triton's distorted atmosphere. Science 278, 436–439 (1997).

    Article  ADS  CAS  Google Scholar 

  8. 8. Elliot, J. L. & Young, L. A. Analysis of stellar occultation data for planetary atmospheres. I. Model fitting, with application to Pluto. Astron. J. 103, 991–1015 (1992).

    Article  ADS  Google Scholar 

  9. Olkin, C. B. et al. The structure of Triton's atmosphere: Results from the entire ground-based occultation data set. Icarus 129, 178–201 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Tyler, G. L. et al. Voyager radio science observations of Neptune and Triton. Science 246, 1466–1473 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Gurrola, E. M. Interpretation of Radar Data from the Icy Galilean Satellites and TritonThesis, Stanford Univ. (1995).

    Google Scholar 

  12. Strobel, D. F., Zhu, X., Summers, M. E. & Stevens, M. H. On the vertical thermal structure of Pluto's atmosphere. Icarus 120, 266–289 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Krasnopolsky, V. A., Sandel, B. R., Herbert, F. & Vervack, R. J. Temperature, N2, and N density profiles of Triton's atmosphere: observations and model. J. Geophys. Res. 98, 3065–3078 (1993).

    Article  ADS  Google Scholar 

  14. Davies, M. E., Rogers, P. G. & Colvin, R. R. Acontrol network of Triton. J. Geophys. Res. 96, 15675–15681 (1991).

    Article  ADS  Google Scholar 

  15. Marouf, E. A., Tyler, G. L., Eshleman, V. R. & Rosen, P. A. Voyager radio occultation of Triton: surface topography and radius. Bull. Am. Astron. Soc. 23, 1207 (1991).

    ADS  Google Scholar 

  16. Trafton, L. Large seasonal variations on Triton. Icarus 58, 312–324 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Ingersoll, A. P. Dynamics of Triton's atmosphere. Nature 344, 315–317 (1990).

    Article  ADS  Google Scholar 

  18. Smith, B. A. et al. Voyager 2 at Neptune: Imaging science results. Science 246, 1422–1449 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Buratti, B. J., Goguen, J. D., Gibson, J. & Mosher, J. Historical photometric evidence for volatile migration on Triton. Icarus 110, 303–314 (1994).

    Article  ADS  Google Scholar 

  20. Eluszkiewicz, J. On the microphysical state of the surface of Triton. J. Geophys. Res. 96, 19217–19230 (1991).

    Article  ADS  Google Scholar 

  21. Duxbury, N. S. & Brown, R. H. The phase composition of Triton's polar caps. Science 261, 748–751 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Nelan and B. McArthur for help in reducing our data; the IRTF staff, the staff of the Lear Jet Observatory at NASA Ames, F. Osell, M. Kakkala, J. Kern, R. Meserole, C. Dahn and R. Stone for assistance; and D. Strobel for discussions. This work was supported, in part, by NASA, NSF, and the National Geographic Society. The NASA/ESA Hubble Space Telescope observations were supported by STScI, which is operated by Association of Universities for Research in Astronomy, Incorporated.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliot, J., Hammel, H., Wasserman, L. et al. Global warming on Triton. Nature 393, 765–767 (1998). https://doi.org/10.1038/31651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31651

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing