Abstract
Rheumatoid arthritis (RA) is a widely prevalent (1–3%) chronic systemic disease thought to have an autoimmune component1; both humoral1–4 and cellular5,6 mechanisms have been implicated. Primary osteoarthritis (OA) is considered to be distinct from rheumatoid arthritis, and here damage is thought to be secondary to cartilage degeneration. In rheumatoid arthritis, immune complexes are present that consist exclusively of immunoglobulin7, implying that this is both the ‘antibody’ (rheumatoid factor [RF]) and the ‘antigen’ (most commonly IgG). Autoantigenic reactivity has been localized to the constant-region (Cγ2) domains of IgG8, 9. There is no evidence for a polypeptide determinant but carbohydrate changes have been reported10. We have therefore conducted a study, simultaneously in Oxford and Tokyo, to compare in detail the N-glycosylation pattern of serum IgG (Fig. 1) isolated from normal individuals and from patients with either primary osteoarthritis or rheumatoid arthritis. The results, which required an evaluation of the primary sequences of ∼1,400 oligosaccharides from 46 IgG samples, indicate that: (1) IgG isolated from normal individuals, patients with RA and patients with OA contains different distributions of asparagine-linked bi-antennary complex-type oligosaccharide structures, (2) in neither disease is the IgG associated with novel oligosaccharide structures, but the observed differences are due to changes in the relative extent of galactosylation compared with normal individuals. This change results in a ‘shift’ in the population of IgG molecules towards those carrying complex oligosaccharides, one or both of whose arms terminate in N-acetylglucosamine. These two arthritides may therefore be glycosylation diseases, reflecting changes in the intracellular processing, or post-secretory degradation of N-linked oligosaccharides.
References
Kunkel, H. G. & Tan, E. M. Adv. Immun. 4, 351–395 (1964).
Pope, R. M., Mannik, M., Gilliland, B. C. & Teller, D. C. Arthritis Rheum. 18, 97–106 (1975).
Stuart, J. M., Townes, A. S. & Kang, A. H. A. Rev. Immun. 2, 199–218 (1984).
Shakib, F. & Stanworth, D. R. Ann. rheum. Dis. 37, 12–17 (1978).
Solinger, A. M., Bhatnagar, R. & Stobo, J. D. Proc. natn. Acad. Sci. U.S.A. 78, 3877–3881 (1981).
Klareskog, L., Forsum, U., Scheynius, A., Kabelitz, D. & Wigzell, H. Proc. natn. Acad. Sci. U.S.A. 79, 3632–3636 (1982).
Winchester, R. J., Kunkel, H. G. & Agnello, V. J. exp. Med. 134, 2865 (1971).
Nardella, F. A., Teller, D. C. & Mannik, M. J. exp. Med. 154, 112–125 (1981).
Henney, C. S. & Stanworth, D. R. Nature 201, 511–512 (1964).
Mullinax, F., Hymes, A. J. & Mullinax, G. L. Arthritis Rheum. 19, 813 (1976).
Takasaki, S., Mizuochi, T. & Kobata, A. Meth. Enzym. 83, 263–268 (1982).
Yamashita, K., Mizuochi, T. & Kobata, A. Meth. Enzym. 83, 105–126 (1982).
Mizuochi, T., Taniguchi, T., Shimizu, A. & Kobata, A. J. Immun. 129, 2016–2020 (1982).
Rademacher, T. W. & Dwek, R. A. Prog. Immun. 5, 95–112 (1983).
Yamashita, K., Tachibana, Y., Ohkura, T. & Kobata, A. J. biol Chem. 260, 3963–3969 (1985).
Sutton, B. J. & Phillips, D. C. Biochem. Soc. Trans. 11, 130–132 (1982).
Homans, S. W., Dwek, R. A., Fernandes, D. L. & Rademacher, T. W. FEBS Lett. 164, 231–235 (1983).
Heimer, R., Fenton, M. R. & Abruzzo, L. J. Immunochemistry 8, 603–611 (1971).
Hymes, A. J., Mullinax, G. L. & Mullinax, F. J. biol Chem. 254, 3148–3151 (1979).
Normansell, D. E. Immunochemistry 8, 593–602 (1971).
Normansell, D. E. & Stanworth, D. R. Immunology 15, 549–560 (1968).
Normansell, D. E. & Stanworth, D. R. Immunology 10, 527–533 (1966).
Panayi, G. S. in Immunogenetics (eds Panayi, G. S. & David, C. S.) Ch. 6 (Butterworths, London, 1984).
McMichael, A. J., Sasazuki, T., McDevitt, H. O. & Payne, R. O. Arthritis Rheum. 20, 1037–1042 (1977).
Lloyd, E. Handbook of Application Mathematics Vol. 6, Pt B (Wiley, New York, 1984).
Primer on the Rheumatic Diseases 7th edn, Appendix 1 (ed. Rodman, G. P.) 137–140 (Arthritis Foundation, New York, 1973).
Sox, H. C. Jr., & Hood, L. Proc. natn. Acad. Sci. U.S.A. 66, 975–982 (1970).
Spiegelberg, H. L., Abel, A. C., Fishkin, B. G. & Grey, H. M. Biochemistry 9, 4217–4223 (1970).
Montreuil, J. Biochem. Soc. Trans. 11, 134–136 (1982).
Rademacher, T. W. et al. Biochem. Soc. Trans. 11, 132–134 (1982).
Glasgow, L. R., Paulson, J. C. & Hill, R. L. J. biol Chem. 252, 8615–8623 (1977).
Yamashita, K., Ohkura, T., Yoshima, H. & Kobata, A. Biochem. biophys. Res. Commun. 100, 226–232 (1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Parekh, R., Dwek, R., Sutton, B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985). https://doi.org/10.1038/316452a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/316452a0
This article is cited by
-
Glycobiology of rheumatic diseases
Nature Reviews Rheumatology (2023)
-
Baseline IgG-Fc N-glycosylation profile is associated with long-term outcome in a cohort of early inflammatory arthritis patients
Arthritis Research & Therapy (2022)
-
Protein N-glycosylation aberrations and glycoproteomic network alterations in osteoarthritis and osteoarthritis with type 2 diabetes
Scientific Reports (2022)
-
Aberrant Immunoglobulin G Glycosylation in Multiple Sclerosis
Journal of Neuroimmune Pharmacology (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.