Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine activates an inward current in single mammalian smooth muscle cells

Abstract

Acetylcholine, the major excitatory neurotransmitter to the smooth muscle of mammalian intestine1, is known to depolarize smooth muscle cells with an apparent increase in membrane conductance2. However, the ionic mechanisms that are triggered by muscarinic receptor activation and underlie this response are poorly understood, due in part to the technical problems associated with the electrophysiological study of smooth muscle3. The muscarinic action of acetylcholine in certain neurones has been shown to involve the switching off of a resting K+ current (M-current)4 and a similar mechanism has recently also been identified in smooth muscle of amphibian stomach5. We have now applied the patch-clamp technique6 to single smooth muscle cells7,8 of rabbit jejunum and find that muscarinic receptor activation switches on a nonselective, voltage-sensitive inward current. In addition, acetylcholine activates and then suppresses spontaneous K+ current transients, which are probably triggered by rises in intracellular Ca2+ in these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bolton, T. B. Br. med. Bull. 5, 275–283 (1979).

    Article  Google Scholar 

  2. Bolton, T. B. J. Physiol., Lond. 220, 647–671 (1972).

    Article  CAS  Google Scholar 

  3. Bolton, T. B., Tomita, T. & Vassort, G. in Smooth Muscle: An Assessment of Current Knowledge (eds Bülbring, E. et al.) (Edward Arnold, London.)

  4. Brown, D. A. & Adams, P. R. Nature 283, 673–676 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Sims, S. M., Singer, J. J. & Walsh, J. V. Soc. Neurosci. Abstr. 9, 732 (1983).

    Google Scholar 

  6. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  7. Benham, C. D. & Bolton, T. B. J. Physiol., Lond. 340, 469–486 (1983).

    Article  CAS  Google Scholar 

  8. Benham, C. D., Bolton, T. B. & Lang, R. J. J. Physiol., Lond. 353, 67P (1984).

    Article  Google Scholar 

  9. Mayer, M. L. & Westbrook, G. J. Physiol., Lond. 354, 29–54 (1984).

    Article  CAS  Google Scholar 

  10. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Mayer, M. L., Westbrook, G. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Benham, C. D., Bolton, T. B., Lang, R. J. & Takewaki, T. J. Physiol., Lond. (in the press).

  13. Fabiato, A. & Fabiato, F. Circulation Res. 40, 119–129 (1977).

    Article  CAS  Google Scholar 

  14. Orchard, C. H., Eisner, D. A. & Allen, D. G. Nature 304, 735–738 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Brown, D., Constanti, A. & Adams, P. R. Cell Calcium 4, 407–420 (1983).

    Article  CAS  Google Scholar 

  16. Katz, B. & Miledi, R. Proc. R. Soc. Lond. B161, 483–495 (1965).

    ADS  CAS  PubMed  Google Scholar 

  17. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Bolton, T. B. Physiol. Rev. 59, 606–718 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benham, C., Bolton, T. & Lang, R. Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature 316, 345–347 (1985). https://doi.org/10.1038/316345a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316345a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing