Phosphorylation of the glucose transporter in vitro and in vivo by protein kinase C

Abstract

The Ca2+- and phospholipid-dependent protein kinase (protein kinase C) is present in many mammalian tissues1, and its important physiological protein substrates are only now beginning to be identified. A useful advance in identifying these i ntracellular substrates has been the recognition that the kinase is the receptor for phorbol esters, which stimulate phosphotransferase activity2–4. Phorbol ester-induced changes in protein phosphorylation in intact cells may thus be taken, in part, as a probable indication of protein kinase C activation. The many cellular effects of phorbol esters include the stimulation of glucose uptake5–8, although the response of glucose uptake to phorbol esters appears to be complex, apparently varying in response time and requirement for protein synthesis6,7. Such observations prompted us to explore one possible explanation for the alteration of glucose uptake, namely, phosphorylation of the glucose transporter by protein kinase C. We report here that incubation of purified human erythrocyte glucose transporter with rat brain protein kinase C results in the phosphorylation of a protein of relative molecular mass (Mr) 50,000–60,000 which has subsequently been identified as the glucose transporter by specific immunoprecipitation with a monoclonal antibody. Immunoprecipitation of membrane proteins from 32P-labelled human erythrocytes revealed a phorbol ester-stimulated phosphorylation of the transporter. This covalent modification of the glucose transporter may thus, in part, underlie the ability of phorbol esters and certain hormones to stimulate glucose uptake.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kikkawa, Y. et al. J. biol. Chem. 257, 13341–13348 (1982).

    CAS  PubMed  Google Scholar 

  2. 2

    Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  3. 3

    Neidel, J. E., Kuhn, L. T. & Vandenbark, G. R. Proc. natn. Acad. Sci. U.S.A. 80, 36–40 (1983).

    ADS  Article  Google Scholar 

  4. 4

    Parker, P. J., Stabel, S. & Waterfield, M. D. EMBO J. 3, 953–959 (1984).

    CAS  Article  Google Scholar 

  5. 5

    Driedger, P. E. & Blumberg, P. M. Cancer Res. 37, 3257–3265 (1977).

    CAS  PubMed  Google Scholar 

  6. 6

    Lee, L.-S. & Weinstein, I. B. J. cell. Physiol. 99, 451–460 (1979).

    CAS  Article  Google Scholar 

  7. 7

    O'Brien, T. G. J. cell. Physiol. 110, 63–71 (1982).

    CAS  Article  Google Scholar 

  8. 8

    Klip, A., Rothstein, A. & Mack, E. Biochem. biophys. Res. Commun. 124, 14–22 (1984).

    CAS  Article  Google Scholar 

  9. 9

    Gorga, F. R., Baldwin, S. A. & Lienhard, G. E. Biochem. biophys. Res. Commun. 91, 955–961 (1979).

    CAS  Article  Google Scholar 

  10. 10

    Lienhard, G. E., Crabb, J. H. & Ransome, K. J. Biochim. biophys. Acta 769, 404–410 (1984).

    CAS  Article  Google Scholar 

  11. 11

    Baldwin, S. A., Baldwin, J. M. & Lienhard, G. E. Biochemistry 21, 3869–3874 (1982).

    Article  Google Scholar 

  12. 12

    Allard, J. & Lienhard, G. J. biol. Chem. (in the press).

  13. 13

    Gorga, F. R. & Lienhard, G. E. Biochemistry 21, 1905–1908 (1982).

    CAS  Article  Google Scholar 

  14. 14

    Ling, E. & Sapirstein, V. Biochem. biophys. Res. Commun. 120, 291–298 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Lienhard, G. E. Trends biochem. Sci. 8, 125–127 (1983).

    CAS  Article  Google Scholar 

  16. 16

    Cochet, C. et al. J. biol. Chem. 259, 2553–2558 (1984).

    CAS  PubMed  Google Scholar 

  17. 17

    Iwashita, S. & Fox, C. F. J. biol. Chem. 259, 2559–2567 (1984).

    CAS  PubMed  Google Scholar 

  18. 18

    Sawyer, S. T. & Cohen, S. T. Biochemistry 20, 6280–6286 (1981).

    CAS  Article  Google Scholar 

  19. 19

    Friedman, B. et al. Proc. natn. Acad. Sci. U.S.A. 81, 3034–3038 (1984).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Habenicht, A. J. R. et al. J. biol. Chem. 256, 12329–12335 (1981).

    CAS  PubMed  Google Scholar 

  21. 21

    Kishimoto, A. et al. J. biol. Chem. 255, 2273–2276 (1980).

    CAS  PubMed  Google Scholar 

  22. 22

    Barnes, D. & Colowick, S. P. J. cell. Physiol. 89, 633–640 (1976).

    CAS  Article  Google Scholar 

  23. 23

    Jacobs, S. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6211–6213 (1983).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Laemmli, U. K. Nature 227, 680–685 (1970).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Patel, V. P. & Fairbanks, G. J. Cell Biol. 88, 430–444 (1981).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Witters, L., Vater, C. & Lienhard, G. Phosphorylation of the glucose transporter in vitro and in vivo by protein kinase C. Nature 315, 777–778 (1985). https://doi.org/10.1038/315777a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.