Structural organization of the bcr gene and its role in the Ph′ translocation


The Philadelphia (Ph′) chromosome, an abnormal chromosome 22 (ref. 1), is one of the best-known examples of a specific human chromosomal abnormality strongly associated with one form of human leukaemia, chronic myelocytic leukaemia (CML). The finding2 that a small region of chromosome 9 which includes the c-abl oncogene is translocated to chromosome 22 prompted studies to elucidate the molecular mechanisms involved in this disease. We have demonstrated previously that the chromosome 9 of one patient with CML contains a breakpoint 14 kilobases (kb) 5′ of the most 5′ v-abl-homologous exon3. These data suggest a role for c-abl in CML, a theory supported by the presence of an abnormally sized abl messenger RNA4,5 and protein6 in the CML cell line K562. The region involved in the translocation on chromosome 22 has also been identified: all Ph′-positive patients examined to date have a breakpoint within a 5.8-kb region, for which we have proposed the name ‘breakpoint cluster region’ (bcr)7. To determine whether her contains protein-encoding regions, probes from bcr were tested for their ability to hybridize to complementary DNA sequences. A 0.6-kb HindIII/BamHl bcr restriction enzyme fragment proved suitable for isolating several cDNA clones from a human fibroblast cDNA library8. Using bcr cDNA sequences, we obtained data strongly suggesting the presence of a chimaeric bcr/abl mRNA in the leukaemic cells of Ph′-positive CML patients. The recent isolation of cDNA clones containing bcr and abl sequences confirms this finding12. Because the bcr part of the chimaeric mRNA could be required to induce the transforming activity of the human c-abl oncogene, we have now initiated studies to characterize the normal ‘bcr gene’ and to determine the effect of a translocation within its coding domain. We demonstrate that as a result of the Ph′ translocation, a variable number of bcr exons are included in the chimaeric bcr/abl mRNA. The bcr gene sequences in this mRNA could be responsible for the transition of the abl cellular proto-oncogene into an oncogene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Rowley, J. D. Nature 243, 290–293 (1973).

    CAS  Article  ADS  Google Scholar 

  2. 2

    de Klein, A. et al. Nature 300, 765–767 (1982).

    CAS  Article  ADS  Google Scholar 

  3. 3

    Heisterkamp, N. et al. Nature 306, 239–242 (1983).

    CAS  Article  ADS  Google Scholar 

  4. 4

    Collins, S. J., Kubonishi, I., Miyoshi, I. & Groudine, M. T. Science 225, 72–74 (1984).

    CAS  Article  ADS  Google Scholar 

  5. 5

    Gale, R. P. & Canaani, E. Proc. natn. Acad. Sci. U.S.A. 81, 5648–5652 (1984).

    CAS  Article  ADS  Google Scholar 

  6. 6

    Konopka, J. B., Watanabe, S. M. & Witte, O. N. Cell 317, 1035–1042 (1984).

    Article  Google Scholar 

  7. 7

    Groffen, J. et al. Cell 36, 93–99 (1984).

    CAS  Article  Google Scholar 

  8. 8

    Okayama, H. & Berg, P. Molec. Cell Biol. 3, 280–289 (1983).

    CAS  Article  Google Scholar 

  9. 9

    Bartram, C. R. et al. Nature 306, 277–280 (1983).

    CAS  Article  ADS  Google Scholar 

  10. 10

    Lipman, D. F. & Pearson, W. R. Science 227, 1435–1441 (1985).

    CAS  Article  ADS  Google Scholar 

  11. 11

    Bartram, C. R. et al. EMBO J. 4, 683–686 (1985).

    CAS  Article  Google Scholar 

  12. 12

    Canaani, E. et al. Nature 315, 550–554 (1985).

    Article  ADS  Google Scholar 

  13. 13

    Groffen, J., Heisterkamp, N., Reynolds, F. Jr & Stephenson, J. R. Nature 304, 167–169 (1983).

    CAS  Article  ADS  Google Scholar 

  14. 14

    Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    CAS  Article  ADS  Google Scholar 

  15. 15

    Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    CAS  Article  Google Scholar 

  16. 16

    Groffen, J., Heisterkamp, N., Blennerhassett, G. & Stephenson, J. R. Virology 126, 213–227 (1983).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heisterkamp, N., Stam, K., Groffen, J. et al. Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 315, 758–761 (1985).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.