Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weak neutral current and β radiolysis effects on the origin of biomolecular chirality

Abstract

The possibility of a connection between the parity non-conserving weak interactions and the handedness of biomolecules has received recent attention1. Although the asymmetric effects of the weak interactions in molecules have been estimated to be very small2–9, Kondepudi and Nelson (KN)10–13 have shown that autocatalytic chemical systems that spontaneously break chiral symmetry14–19 can effectively amplify systematic chiral perturbations as small as those produced by weak neutral currents2–4,20, despite the simultaneous presence of larger randomly fluctuating chiral perturbations, and hence provide a mechanism for producing the observed homochirality of biomolecules. I show here, in the light of new estimates of the asymmetric decomposition of racemic mixtures by β radiation9, that the chiral selection parameter due to β radiolysis can be up to six orders of magnitude larger than that resulting from weak neutral currents. This suggests that β radiolysis is more likely to be the selector of biomolecular chirality than weak neutral currents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mason, S. F. Nature 311, 19–23 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Rein, D. J. molec. Evol. 4, 15–22 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Hegstrom, R. A., Rein, D. W. & Sandars, P. G. H. J. chem. Phys. 73, 2329–2341 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Mason, S. F. & Tranter, G. E. Chem. Phys. Lett. 94, 34–37 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Vester, F., Ulbricht, T. L. V. & Krauss, H. Naturwissenschaften 46, 68–69 (1959).

    Article  ADS  CAS  Google Scholar 

  6. Zel'dovich, Ya. B. & Saakyan, D. B. Soviet Phys. JETP 51, 1118–1120 (1980).

    ADS  Google Scholar 

  7. Gidley, D. W., Rich, A., Van House, J. & Zitzewitz, P. W. Nature 297, 639–643 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Hegstrom, R. A. Nature 297, 643–647 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Hegstrom, R. A., Rich, A. & Van House, J. Nature 313, 391–392 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Kondepudi, D. K. & Nelson, G. W. Phys. Rev. Lett. 50, 1023–1026 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Kondepudi, D. K. & Nelson, G. W. Physica 125 A, 465–496 (1984).

    Article  Google Scholar 

  12. Kondepudi, D. K. & Nelson, G. W. Phys. Lett. 106 A, 203–206 (1984).

    Article  Google Scholar 

  13. Kondepudi, D. K. & Nelson, G. W. Nature 314, 438–441 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Frank, F. C. Biochim. biophys. Acta 11, 459–463 (1953).

    Article  CAS  Google Scholar 

  15. Decker, P. J. molec. Evol. 2, 137–143 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Hochstim, A. R. Origins Life 6, 317–366 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Fajszi, Cs. & Czege, J. Origins Life 11, 143–162 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Morozov, L. L., Kuz'min, V. V. & Goldanskii, V. I. Origins Life 13, 119–138 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Tennakone, K. Chem. phys. Lett. 105, 444–446 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Weinberg, S. Phys. Rev. Lett. 19, 1264–1266 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegstrom, R. Weak neutral current and β radiolysis effects on the origin of biomolecular chirality. Nature 315, 749–750 (1985). https://doi.org/10.1038/315749a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315749a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing