A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms

Abstract

When the sedimentary microrhythms of two groups of Jurassic zones forming part of the chronostratigraphical scale are analysed against recent radiometric age scales there is good agreement with present-day cycles resulting from the obliquity of the ecliptic. Sedimentary microrhythms resulting from orbital forcing can be used to establish either the relative or the true length of chronostratigraphical zones and thus provide a new approach towards an absolute timescale. Such a scale will be powerful in the analysis of other cycles and perturbations in the geological record.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hedberg, H. D. International Stratigraphic Guide (Wiley, New York, 1975).

    Google Scholar 

  2. 2

    Hays, J. D., Imbrie, J. & Shackelton, N. J. Science 194, 1121–1132 (1976).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Imbrie, J. & Imbrie, J. Z. Science 207, 943–953 (1980).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Pisias, N. G. & Shackleton, N. J. Nature 320, 757–759 (1984).

    ADS  Article  Google Scholar 

  5. 5

    Schwarzacher, W. Sedimentation Models and Quantitative Stratigraphy. (Elsevier, Amsterdam, 1975).

    Google Scholar 

  6. 6

    Einsele, G. & Seilacher, A. (eds) Cyclic and Event Stratification (Springer, Berlin, 1982).

  7. 7

    Berger, A. L., Imbrie, J., Hays, G., Kukla, G. & Saltzman, B. Milankovitch and Climate (Reidel, Dordrecht, 1984).

    Google Scholar 

  8. 8

    Harland, W. B. et al. (eds) The Phanerozoic Time-Scale (Q. Jl Geol. Soc. Lond. Suppl. 120, 1964).

  9. 9

    Imbrie, J. J. geol. Soc., Lond. 142, 417–432 (1985).

    Article  Google Scholar 

  10. 10

    Callomon, J. H. & Birkelund, T. Mem. Can. Soc. petrol. Geol. 8, 349–369 (1983).

    Google Scholar 

  11. 11

    Snelling, N. (ed.) The Chronology of the Geological Record (Blackwell, Oxford, 1985).

  12. 12

    Westermann, G. Episodes 7, 26–28 (1984).

    Article  Google Scholar 

  13. 13

    House, M. R. Nature 313, 17–22 (1985).

    ADS  Article  Google Scholar 

  14. 14

    House, M. R. Proc. Ussher Soc. 5, 396–405 (1983).

    ADS  Google Scholar 

  15. 15

    Arkell, W. J. The Jurassic System in Great Britain (Oxford University Press, 1933).

    Google Scholar 

  16. 16

    Wilson, R. C. L. Changing Sea-Levels: a Jurassic Case Study (Open University Press, Milton Keynes, 1981).

    Google Scholar 

  17. 17

    Melville, R. V. & Freshney, E. C. The Hampshire Basin and Adjoining Areas (HMSO, London, 1982).

    Google Scholar 

  18. 18

    Lang, W. D. Proc. geol. Ass., Lond. 35, 169–185 (1924).

    Article  Google Scholar 

  19. 19

    Lang, W. D., Spath, L. F. & Richardson, W. A. Q. Jl geol. Soc. Lond. 79, 47–99 (1923).

    Article  Google Scholar 

  20. 20

    Hallam, A. Phil. Trans. R. Soc. B243, 1–44 (1960).

    Google Scholar 

  21. 21

    Sellwood, B. W., Durkin, M. A. & Kennedy, W. J. Proc. geol. Ass. 81, 715–732 (1970).

    Article  Google Scholar 

  22. 22

    Sellwood, B. W. Palaeontology 15, 121–124 (1972).

    Google Scholar 

  23. 23

    Cope, J. C. W. (ed.) A Correlation of Jurassic Rocks in the British Isles (Geological Society, London. 1980).

  24. 24

    Whittaker, A. & Green, G. W. Geology of the Country around Weston-Super-Mare (Geological Survey of Great Britain, 1983).

    Google Scholar 

  25. 25

    Cope, J. C. W. Bull. Br. Mus. (Nat. Hist.), Geol. 15(1), 1–80 (1967).

    Google Scholar 

  26. 26

    Cox, B. M. & Gallois, R. W. Rep. Inst. geol. Sci. (U.K.) 80(4) (1981).

  27. 27

    Gallois, R. W. Rep. Inst. geol. Sci. (U.K.) 78(13) (1979).

  28. 28

    Arkell, W. J. Jurassic Geology of the World (Oliver & Boyd, Edinburgh, 1956).

    Google Scholar 

  29. 29

    Hallam, A. Proc. 27 Int. Geol. Cong., Moscow, Stratigraphy, 1, 189–212 (1984).

    Google Scholar 

  30. 30

    Weedon, G. P. Terra Cognita, 5, 110 (1985).

    Google Scholar 

  31. 31

    Peterson, G. P. in Climatic Changes on a Yearly to Millenial Basis (eds Mörner, N.-A. & Karlen, W.) 621–633 (Reidel, Dordrecht, 1984).

    Google Scholar 

  32. 32

    Irwin, H. Sedimentology 27, 577–591 (1980).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Dunn, C. E. Chem. Geol. 13, 217–232 (1974).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Palmer, A. R. Geology 11, 503–497 (1982).

    Google Scholar 

  35. 35

    Van Hinte, J. E. Bull. Am. Ass. petrol. Geol. 60, 489–497 (1976).

    Google Scholar 

  36. 36

    Harland, W. B. et al. A Geologic Time Scale (Cambridge University Press, 1982).

    Google Scholar 

  37. 37

    Odin, G. S. (ed.) Numerical Dating in Stratigraphy (Wiley, Chichester, 1982).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

House, M. A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms. Nature 315, 721–725 (1985). https://doi.org/10.1038/315721a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.