Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A lattice statistics model for the age distribution of air bubbles in polar ice

Abstract

Measurements of CO2 in bubbles in polar ice have been used to establish a pre-industrial concentration1–4. Similar measurements have been made for other atmospheric constituents5,6. However, in order to use ice-core measurements to determine the increase in CO2 over the last 200 years, it is necessary to consider the time delay between the deposition of the original snow and the bubble trapping and also the distribution of trapping times over several decades7. The percolation model from lattice statistics describes the static geometrical aspects of trapping and reproduces various aspects of recent observations. The observations of large seasonal fluctuations in trapped bubble volume reflect the enhanced susceptibility to perturbations near the percolation transition. The critical exponent of the percolation probability largely determines the stability of the deconvolution of observed concentrations, indicating that the bubble deconvolution problem is less poorly posed than typical geochemical source deduction problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berner, W., Stauffer, B. & Oeschger, H. Nature 276, 53–55 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Delmas, R. J., Ascencio, J.-M. & Legrand, M. Nature 284, 155–157 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Barnola, J. M., Raynaud, D., Neftel, A. & Oeschger, H. Nature 303, 410–412 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Berner, W., Oeschger, H. & Stauffer, B. Radiocarbon 22, 227–235 (1980).

    Article  CAS  Google Scholar 

  6. Craig, H. & Chou, C. C. Geophys. Res. Lett. 9, 1221–1224 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Schwander, J. & Stauffer, B. Nature 311, 45–47 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Shante, V. K. S. & Kirkpatrick, S. Adv. Phys. 20, 325–327 (1971).

    Article  ADS  Google Scholar 

  9. Essam, J. W. Phase Transitions and Critical Phenomena Vol. 2 (ed. Domb, C. & Green, M. S.) Ch. 2 (Academic, New York, 1974).

    Google Scholar 

  10. Deutscher, G., Zallen, R. & Adler, J. (eds) Percolation Structures and Processes (Ann. Israel Phys. Soc. Vol. 5) (Hilger, Bristol, 1983).

  11. Kasteleyn, P. W. & Fortuin, C. M. J. phys. Soc. Japan 26 (Suppl.), 11 (1969).

    ADS  Google Scholar 

  12. Wu, F. Y. Rev. mod. Phys. 54, 235–268 (1982).

    Article  ADS  Google Scholar 

  13. Wilson, K. G. Rev. mod. Phys. 55, 583–600 (1983).

    Article  ADS  Google Scholar 

  14. Domb, C. in Phase Transitions and Critical Phenomena (eds Domb, C. & Green, M. S.) 464 (Academic, New York, 1974).

    Google Scholar 

  15. Nienhuis, B., Reidel, E. K. & Schick, M. J. Phys. A13, L189 (1980).

    ADS  Google Scholar 

  16. Pearson, R. B. Phys. Rev. B22, 2579 (1980).

    Article  ADS  Google Scholar 

  17. Gaunt, D. S. & Sykes, M. F. J. Phys. A16, 783–800 (1983).

    ADS  Google Scholar 

  18. Loosi, H. H. Earth planet. Sci. Lett. 63, 51–62 (1983).

    Article  ADS  Google Scholar 

  19. Ross, B. Lect. Not. Math. 457, 1–36 (1974).

    Google Scholar 

  20. Anderssen, R. S. & de Hoog, F. R. Math. Scient. 8, 115–141 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enting, I. A lattice statistics model for the age distribution of air bubbles in polar ice. Nature 315, 654–655 (1985). https://doi.org/10.1038/315654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315654a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing