Methane flux from northern peatlands

Abstract

The concentration of methane (CH4) in the global troposphere is increasing. Ambient air measurements document an approximate rate of increase of 1–2% yr−1 over the past decade1–4. Measurements of CH4 in air bubbles trapped in polar ice indicate that tropospheric concentrations of CH4 several hundred years ago may have been 45% of present levels5–7. To understand and assess possible causes of the atmospheric CH4 increase requires improved quantitative knowledge of global sources and sinks of CH4. Previous attempts to estimate sources of atmospheric CH4, based on very few measurements, have suggested that natural and agricultural wetlands are major sources8,9. The major wetland regions of the world are in boreal, low Arctic and tropical ecosystems10. It is these regions, particularly in peatland habitats where major accumulations of organic materials occur under anaerobic conditions, that should be significant sources of global tropospheric CH4. The most extensive peatlands in the world occur in the boreal taiga zone between 45° and 65° N latitude. More than 95% of world peat resources occur in the Soviet Union, Canada, the United States, Sweden, Norway, Finland and the United Kingdom10. We report here the first survey of CH4 flux from northern peatlands of the United States. Emission rates ranged from 0.003 to 1.94 g CH4 m−2 day−1, with half of these values between 0.1 and 0.4 g CH4 m−2 day−1. The frequency distribution is log normal (Fig. 1) and the mean emission rate is 0.337 g CH4 m−2 day−1. Such fluxes are higher than most values reported for other ecosystems, suggesting that northern peatlands may be an important source of global tropospheric CH4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Graedel, T. E. & McRae, J. E. Geophys. Res. Lett. 7, 977–979 (1980).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Rasmussen, R. A. & Khalil, M. A. K. J. geophys. Res. 86, 883–886 (1981).

    Article  Google Scholar 

  3. 3

    Fraser, P. J., Khalil, M. A. K., Rasmussen, R. A. & Crawford, A. J. Geophys. Res. Lett. 8, 1063–1066 (1981).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Blake, D. R. et al. Geophys. Res. Lett. 9, 477–480 (1982).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Robbins, R. C., Cavanagh, L. A. & Salas, L. J. J. geophys. Res. 78, 5341–5344 (1973).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Craig, H. & Chou, C. C. Geophys. Res. Lett. 9, 1221–1224 (1982).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Khalil, M. A. K. & Rasmussen, R. A. Chemosphere 11, 877–883 (1982).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ehhalt, D. H. Tellus 26, 58–70 (1974).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Khalil, M. A. K. & Rasmusen, R. A. J. geophys. Res. 88, 5131–5144 (1983).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gore, A. J. P. (ed.) Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor Vols 4 A, 4 B (Elsevier, New York, 1983).

  11. 11

    Sebacher, D. I. Rev. Scient. Instrum. 49, 1520–1525 (1978).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Sebacher, D. I. & Harriss, R. C. J. Envir. Qual. 11, 34–37 (1982).

    CAS  Article  Google Scholar 

  13. 13

    Boelter, D. H. & Verry, E. S. USDA Forest Service Gen. Tech. Rep. NC-31 (1977).

  14. 14

    Verry, E. S. Ecology 56, 1149–1157 (1975).

    CAS  Article  Google Scholar 

  15. 15

    Boelter, D. H. thesis, Univ. Minnesota, Minneapolis (1962).

  16. 16

    Joyal, R. Mich. Botan. 10, 78 (1971).

    Google Scholar 

  17. 17

    Williams, R. T. & Crawford, R. L. Appl. Envir. Microbiol. 47, 1266–1271 (1984).

    CAS  Google Scholar 

  18. 18

    Svensson, B. H. thesis, Swedish Univ. Agricultural Sciences, Uppsala (1983).

  19. 19

    Clymo, R. S. & Reddaway, E. J. F. Hydrobiologia 12, 181–192 (1971).

    Google Scholar 

  20. 20

    Heal, O. W. & Smith, R. A. H. (eds) Production Ecology of British Moors and Montane Grasslands Ch. 1, 3–16 (Springer, Berlin 1978).

    Google Scholar 

  21. 21

    Cicerone, R. J., Shetter, J. D. & Delwiche, C. C. J. geophys. Res. 88, 11022–11024 (1983).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Seiler, E., Holzapfel-Pschorn, A. Conrad, R. & Scharffe, D. J. atmos. Chem. 1, 241–268 (1984).

    CAS  Article  Google Scholar 

  23. 23

    Harriss, R. C. & Sebacher, D. I. Geophys. Res. Lett. 8, 1002–1004 (1981).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Miller, P. C. U.S. Dept Energy Rep. EV/10019-14, v. 2 (1982).

  25. 25

    Verry, E. S. & Boelter, D. H. in Wetland Functions and Values: The state of Our Understanding 389–402 (American Waterworks Association, Minneapolis (1978).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harriss, R., Gorham, E., Sebacher, D. et al. Methane flux from northern peatlands. Nature 315, 652–654 (1985). https://doi.org/10.1038/315652a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.