High-resolution structure of a DNA helix containing mismatched base pairs

Abstract

The concept of complementary base pairing, integral to the double-helical structure of DNA, provides an effective and elegant mechanism for the faithful transmission of genetic information1,2. Implicit in this model, however, is the potential for incorporating non-complementary base pairs (mismatches) during replication or subsequently, for example, during genetic recombination3,4. As such errors are usually damaging to the organism, they are generally detected and repaired. Occasionally, however, the propagation of erroneous copies of the genome confers a selective advantage, leading to genetic variation and evolutionary change. An understanding of the nature of base-pair mismatches at a molecular level, and the effect of incorporation of such errors on the secondary structure of DNA is thus of fundamental importance. We now report the first single-crystal X-ray analysis of a DNA fragment, d(GGGGCTCC), which contains two non-complementary G·T base pairs, and discuss the implications of the results for the in vivo recognition of base-pair mismatches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Watson, J. D. & Crick, F. H. C. Nature 171, 737 (1953).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Watson, J. D. & Crick, F. H. C. Nature 171, 964–967 (1953).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Radding, C. M. A. Rev. Biochem. 47, 847–880 (1978).

    CAS  Article  Google Scholar 

  4. 4

    Hotchkiss, R. D A. Rev. Microbiol. 28, 445 (1974).

    CAS  Article  Google Scholar 

  5. 5

    Topal, M. D. & Fresco, J. R. Nature 263, 285–293 (1976).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Crick, F. H. C. J. molec. Biol. 19, 548–555 (1976).

    Article  Google Scholar 

  7. 7

    Ladner, J. E. et al. Nucleic Acids Res. 2, 1629–1637 (1975).

    CAS  Article  Google Scholar 

  8. 8

    Quigley, G. J., Seeman, N. C., Wang, A. H.-J., Suddath, F. L. & Rich, A. Nucleic Acids Res. 2, 2329–2335 (1975).

    CAS  Article  Google Scholar 

  9. 9

    Sussman, J. L. & Kim, S. H. Biochem. biophys. Res. Commun. 68, 89–96 (1976).

    CAS  Article  Google Scholar 

  10. 10

    Stout, C. D. et al. Nucleic Acids Res. 3, 1111–1123 (1976).

    CAS  Article  Google Scholar 

  11. 11

    Mizuno, H. & Sundaralingham, M. Nucleic Acids Res. 5, 4451–4461 (1978).

    CAS  Article  Google Scholar 

  12. 12

    Patel, D. J. et al. Biochemistry 21, 437–444 (1982).

    CAS  Article  Google Scholar 

  13. 13

    Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. Fedn Proc. 43, 2663–2670 (1984).

    CAS  Google Scholar 

  14. 14

    Early, T. A., Olmstead, J. III, Kearns, D. R. & Lezius, A. G. Nucleic Acids Res. 5, 1955–1965 (1978).

    CAS  Article  Google Scholar 

  15. 15

    Fersht, A. R., Shi, J.-P. & Tsui, W.-C. J. molec. Biol. 165, 655–667 (1983).

    CAS  Article  Google Scholar 

  16. 16

    Chuprina, V. P. & Poltev, V. I. Nucleic Acids Res. 11, 5205–5222 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Rein, R., Shibata, M., Gardino-Juarez, R. & Keiber-Emmons, T. in Structure and Dynamics of Nucleic Acids and Proteins (eds Clementi, E. & Sarma, R.) 269–288 (Adenine, New York, 1983).

    Google Scholar 

  18. 18

    Shakked, Z. & Kennard, O. in Biological Macromolecules and Assemblies Vol. 2 (eds McPherson, A. & Jurnak, F.) 1–36 (Wiley, New York, 1985).

    Google Scholar 

  19. 19

    Dickerson, R. E. J. molec. Biol. 166, 419–441 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Wang, A. H. J. et al. Science 211, 171–176 (1981).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Shakked, Z. et al. J. molec. Biol. 166, 183–201 (1983).

    CAS  Article  Google Scholar 

  22. 22

    McCall, M., Brown, T., Cruse, W. B. T. & Kennard, O. Acta crystallogr. A40, 6–46 (1984).

    Article  Google Scholar 

  23. 23

    Gait, M. J., Matthes, H. W. D., Singh, M., Sproat, B. S. & Titmus, R. C. Nucleic Acids Res. 10, 6243–6248 (1982).

    CAS  Article  Google Scholar 

  24. 24

    Arnott, S. & Hukins, D. W. I. Biochem. biophys. Res. Commun. 47, 1504–1509 (1972).

    CAS  Article  Google Scholar 

  25. 25

    Sussman, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. Acta crystallogr. 33, 800–804 (1977).

    Article  Google Scholar 

  26. 26

    Hendrickson, W. A. & Konnert, J. H. in Biomolecular Structure Conformation, Function and Evolution Vol. 1 (ed. Srinivasan, R.) 43–57 (Pergamon, Oxford, 1981).

    Google Scholar 

  27. 27

    Saenger, W. Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Google Scholar 

  28. 28

    Havan, T. E., Berkonich-Yellin, Z. & Shakked, Z. Biomolec. Struct. Dynam. 2, 397–412 (1984).

    Article  Google Scholar 

  29. 29

    Calladine, C. R. J. molec. Biol. 161, 343–352 (1982).

    CAS  Article  Google Scholar 

  30. 30

    Loeb, A. L. & Kunkel, T. A. A. Rev. Biochem. 51, 429–457 (1982).

    CAS  Article  Google Scholar 

  31. 31

    Topal, M. D., DiGuiseppi, S. R. & Sinha, N. K. J. biol. Chem. 255, 11717–11724 (1980).

    CAS  PubMed  Google Scholar 

  32. 32

    Gillan, F. D. & Nossal, H. G. J. biol. Chem. 51, 5225–5232 (1976).

    Google Scholar 

  33. 33

    Gillan, F. D. & Nossal, N. G. J. biol. Chem. 51, 5219–5224 (1976).

    Google Scholar 

  34. 34

    Hershfield, M. S. J. biol. Chem. 248, 1417–1423 (1973).

    CAS  PubMed  Google Scholar 

  35. 35

    Hal, Z. W. & Lehman, I. R. J. molec. Biol. 36, 321–333 (1969).

    Article  Google Scholar 

  36. 36

    Kornberg, A. DNA Replication (W. H. Freeman, San Francisco, 1980).

    Google Scholar 

  37. 37

    Fersht, A. R., Knill-Jones, J. W. & Tsui, W. C. J. molec. Biol. 156, 37–51 (1982).

    CAS  Article  Google Scholar 

  38. 38

    Drew, H. R. & Travers, A. Cell 37, 491–502 (1984).

    CAS  Article  Google Scholar 

  39. 39

    Frederick, C. A. et al. Nature 309, 327–331 (1984).

    ADS  CAS  Article  Google Scholar 

  40. 40

    Wing, R. et al. Nature 287, 755–758 (1980).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, T., Kennard, O., Kneale, G. et al. High-resolution structure of a DNA helix containing mismatched base pairs. Nature 315, 604–606 (1985). https://doi.org/10.1038/315604a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.