A model of object Geminga as a degenerate white dwarf orbiting around a black hole


Geminga (2CG195+04) is a very bright γ-ray source with the flux Fγ = 2.4×10−9 erg s−1 cm−2 for E≥50 MeV (refs 1–3). It has been recently identified with X-ray4 and optical5 sources. The optical object is the bluest for its magnitude5, indicating compactness of the emitting region. The high ratios L/LX≈103, LX/Lopt≈200 and the absence of radio emission are very unusual. The observed periodicity is P≈1 min and it changes at a rate corresponding to a doubling time of about several hundred years. I propose here a model which quantitatively explains the values of P and . It consists of a degenerate dwarf (Md=0.6 M) filling its Roche lobe and orbiting a black hole (Mbh=4.4 M) with a period P=1 min. Gravitational radiation dissipates the angular momentum, which leads to mass transfer with a current rate 10−3 M yr−1 and a period change which agrees with the observed value. At a distance of 100 pc the flux of this radiation would be 5×10−3 erg s−1 cm−2 (at ν=1/30 Hz). This is about seven orders of magnitude greater than from any other known stationary source.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Fichtel, C. E. et al. Astrophys. J. 198, 163 (1975).

    ADS  Article  Google Scholar 

  2. 2

    Thompson, D. J., Fichtel, C. E., Hartman, R. C., Kniffen, D. A. & Lamb, R. C. Astrophys. J. 213, 252 (1977).

    ADS  Article  Google Scholar 

  3. 3

    Swaneuburg, B. N. et al. Astrophys. J. Lett. 243, L69 (1981).

    ADS  Article  Google Scholar 

  4. 4

    Bignami, G. F., Caraveo, P. A. & Lamb, R. C. Astrophys. J. Lett. 272, L9 (1983).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Caraveo, P. A., Bignami, G. F., Vigroux, L. & Paul, J. A. Astrophys. J. Lett. 276, L45 (1984).

    ADS  Article  Google Scholar 

  6. 6

    Paczyński, B. Acta astr. 31, 1 (1981).

    ADS  Google Scholar 

  7. 7

    Chandrasekhar, S. Stellar Structure (University of Chicago Press, 1939).

    Google Scholar 

  8. 8

    Iben, I. & Tutukov, A. V. Preprint IAP 83–84. Univ. Illinois. Urbana (1983).

  9. 9

    Landau, L. D. & Lifshitz, E. M. Teoria polia (Nauka, Moskva, 1967).

    Google Scholar 

  10. 10

    Tutukov, A. V. & Yungelson, L. R. Nauch Inf. Astr. Counsel Acad. Sci. USSR 41, 3 (1978).

    Google Scholar 

  11. 11

    Fishbone, L. G. & Moncrief, V. Astrophys. J. 207, 962 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Kozlowski, M., Jaroszyński, M. & Abramowicz, M. A. Astr. Astrophys. 63, 209 (1978).

    ADS  Google Scholar 

  13. 13

    Rees, M. in Origin of Cosmic Rays (Reidel, Dordrecht, 1981).

    Google Scholar 

  14. 14

    Koch, L. Ann. N. Y. Acad. Sci. 302, 349 (1977).

    ADS  Article  Google Scholar 

  15. 15

    Bignami, G. F. & Hermsen, W. A. Rev. Astr. Astrophys. 21, 67 (1983).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Misner, Ch., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  17. 17

    Nadiozhin, D. K. Astrophys. Space Sci. 51, 283 (1977).

    ADS  Article  Google Scholar 

  18. 18

    Muller, E. & Hillebrandt, W. Astr. Astrophys. 103, 358 (1981).

    ADS  Google Scholar 

  19. 19

    Bignami, G. F., Caraveo, P. A. & Paul, J. A. Nature 310, 464 (1984).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bisnovatyi-Kogan, G. A model of object Geminga as a degenerate white dwarf orbiting around a black hole. Nature 315, 555–557 (1985). https://doi.org/10.1038/315555a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.