Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation

Abstract

There is considerable evidence that cyclic AMP can modulate the electrical activity of excitable cells1–10 and that protein phosphorylation by the catalytic subunit (CS) of cAMP-dependent protein kinase is a necessary step in these modulatory effects11–21. In analogy to alterations in enzyme activities following phosphorylation12, it seems possible that direct phosphorylation of ion-channel proteins may alter their gating properties, giving rise to the observed changes in electrical activity. However, the results obtained so far do not indicate whether it is ion channels themselves that are phosphorylated, or whether phosphorylation is simply an early step in some cascade of events which leads ultimately to modulation of channel activity. The development of single-channel recording techniques22 has provided a way to investigate this question. Here we describe effects of CS on the activity of individual Ca2+-dependent K+ channels from the nervous system of the land snail Helix measured in isolated membrane patches and in artificial phospholipid bilayers. The results demonstrate that cAMP-dependent protein phosphorylation produces long-lasting changes in the activity of individual channels, and indicate that the relevant phosphorylation site is closely associated with the channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tsien, R. W. Nature new Biol. 245, 120–122 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Reuter, H. J. Physiol., Lond. 242, 429–451 (1974).

    Article  CAS  Google Scholar 

  3. Treistman, S. & Levitan, I. B. Nature 261, 62–64 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Kaczmarek, L., Jennings, K. & Strumwasser, F. Proc. natn. Acad. Sci. U.S.A. 75, 5200–5204 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Drummond, A., Benson, J. & Levitan, I. B. Proc. natn. Acad. Sci. U.S.A. 77, 5013–5017 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Deterre, P., Paupardin-Tritsch, D., Bockaert, J. & Gerschenfeld, H. Nature 290, 783–785 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Klein, M., Camardo, J. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 79, 5713–5717 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Siegelbaum, S., Camardo, J. & Kandel, E. R. Nature 299, 413–417 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Lemos, J. & Levitan, I. B. J. gen. Physiol. 83, 269–285 (1984).

    Article  CAS  Google Scholar 

  10. Siegelbaum, S. & Tsien, R. W. Trends Neurosci. 6, 307–313 (1983).

    Article  CAS  Google Scholar 

  11. Kuo, J. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 64, 1349–1355 (1969).

    Article  ADS  CAS  Google Scholar 

  12. Glass, D. & Krebs, E. Ann. Rev. Pharmac. Tox. 20, 363–388 (1980).

    Article  CAS  Google Scholar 

  13. Walsh, D. & Ashby, C. Rec. Prog. Horm. Res. 29, 329–359 (1973).

    CAS  PubMed  Google Scholar 

  14. Adams, W. B. & Levitan, I. B. Proc. natn. Acad. Sci. U.S.A. 79, 3877–3880 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Castellucci, V., Nairn, A., Greengard, P., Schwartz, J. & Kandel, E. R. J. Neurosci. 2, 1673–1681 (1982).

    Article  CAS  Google Scholar 

  16. Osterrieder, W. et al. Nature 298, 576–578 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Kaczmarek, L. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7487–7491 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Castellucci, V. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7492–7496 (1980).

    Article  ADS  CAS  Google Scholar 

  19. DePeyer, J., Cachelin, A., Levitan, I. B. & Reuter, H. Proc. natn. Acad. Sci. U.S.A. 79, 4207–4211 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Alkon, D., Acosta-Urquidi, J., Olds, J., Kuzma, G. & Neary, J. Science 219, 303–306 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Levitan, I. B., Lemos, J. & Novak-Hofer, I. Trends Neurosci. 6, 496–499 (1983).

    Article  CAS  Google Scholar 

  22. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  23. Heyer, C. & Lux, H. D. J. Physiol., Lond. 262, 349–382 (1976).

    Article  CAS  Google Scholar 

  24. Latorre, R. & Miller, C. J. Membrane Biol. 71, 11–30 (1983).

    Article  CAS  Google Scholar 

  25. Lux, H. D., Neher, E. & Marty, A. Pflügers Arch. ges. Physiol. 389, 293–295 (1981).

    Article  CAS  Google Scholar 

  26. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Maruyama, Y. & Petersen, O. Nature 300, 61–63 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Shuster, M., Camardo, J., Siegelbaum, S., Eppler, C. & Kandel, E. R. Soc. Neurosci Abstr. 10, 145 (1984).

    Google Scholar 

  30. Ewald, D. & Levitan, I. B. Soc. Neurosci. Abstr. 10, 145 (1984).

    Google Scholar 

  31. Miller, C. Physiol. Rev. 63, 1209–1242 (1983).

    Article  CAS  Google Scholar 

  32. Suarez-Isla, B., Wan, K., Lindstrom, J. & Montai, M. Biochemistry 22, 2319–2323 (1983).

    Article  CAS  Google Scholar 

  33. Coronado, R. & Latorre, R. Biophys. J. 43, 231–236 (1983).

    Article  CAS  Google Scholar 

  34. Peters, K., Demaille, J. & Fischer, E. Biochemistry 16, 5691–5697 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewald, D., Williams, A. & Levitan, I. Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature 315, 503–506 (1985). https://doi.org/10.1038/315503a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315503a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing