Herd immunity to helminth infection and implications for parasite control


Despite much research on immunological responses to helminth parasites, knowledge of the dynamic interplay between levels of herd immunity in humans and the rates of exposure, establishment and mortality of parasites remains limited1–7. We describe here a simple mathematical model for the population dynamics of helminth infections which mirrors the development of a degree of acquired immunity within populations which are genetically heterogeneous with respect to immunological responsiveness. We interpret observed patterns in the age-specific intensity of infection and attempt to understand the possible effects of control measures based on chemotherapy and vaccination. Mass chemotherapy can, in some circumstances, reduce the level of herd immunity such that average worm burdens in the adult age classes rise above their precontrol levels. When certain individuals or groups are predisposed to heavy infection5,8,9, selective or targeted drug treatment can have significantly greater impact than mass or random application. Conversely, model predictions suggest that effective parasite control by vaccination (if and when vaccines become available) is difficult to achieve in communities that are genetically heterogeneous in their ability to mount protective responses to infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Peters, W. in The Relevance of Parasitology to Human Welfare Today (eds Taylor, A. E. & Muller, R.) 1–17 (Blackwell Scientific, Oxford, 1978.)

    Google Scholar 

  2. 2

    Walsh, J. A. in Tropical and Geographic Medicine (eds Warren, K. S. & Mahmoud, A. A. F.) 1073–83 (McGraw-Hill, New York, 1984).

    Google Scholar 

  3. 3

    Lloyd, S. Parasitology 83, 225–242 (1981).

    CAS  Article  Google Scholar 

  4. 4

    Wakelin, D. Crit. Rev. trop. Med. 2 (in the press).

  5. 5

    Anderson, R. M. & May, R. M. Nature 287, 557–563 (1982).

    ADS  Article  Google Scholar 

  6. 6

    Mahmoud, A. A. F., Siongok, T. K. A. & Ouma, J. Lancet i, 849–851 (1983).

    Article  Google Scholar 

  7. 7

    Wakelin, D. Immunity to Parasites (Arnold, London, 1984).

    Google Scholar 

  8. 8

    Schad, G. A. & Anderson, R. M. Science (in the press).

  9. 9

    Anderson, R. M. & Medley, G. F. Parasitology (in the press).

  10. 10

    Butterworth, A. E. et al. Trans. R. Soc. trop. Med. Hyg. 78, 108–123 (1984).

    CAS  Article  Google Scholar 

  11. 11

    Butterworth, A. E. et al. Trans. R. Soc. trop. Med. Hyg. (in the press).

  12. 12

    Sturrock, R. F. et al. Trans. R. Soc. trop. Med. Hyg. 77, 363–371 (1983).

    CAS  Article  Google Scholar 

  13. 13

    Sturrock, R. F., Cottrell, B. J. & Kimani, R. Parasitology 88, 505–514 (1984).

    Article  Google Scholar 

  14. 14

    Wilkins, H. A., Goll, P. H., Marshall, T. F. & Moore, P. J. Trans. R. Soc. trop. Med. Hyg. 78, 216–221 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Goll, P. H., Wilkins, H. A. & Marshall, T. F. Trans. R. Soc. trop. Med. Hyg. 78, 222–226 (1984).

    CAS  Article  Google Scholar 

  16. 16

    Wilkins, H. A., Goll, P. H., Marshall, T. F. & Moore, P. J. Trans. R. Soc. trop. Med. Hyg. 78, 227–232 (1984).

    CAS  Article  Google Scholar 

  17. 17

    Mitchell, G. F. Adv. Immun. 28, 451–511 (1979).

    CAS  Article  Google Scholar 

  18. 18

    Dean, D. A. Expl Parasit. 55, 1–104 (1983).

    MathSciNet  CAS  Article  Google Scholar 

  19. 19

    Crombie, J. A. & Anderson, R. M. Nature 315, 491–493 (1985).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Miller, T. A. Adv. Parasit. 17, 315–383 (1979).

    CAS  Article  Google Scholar 

  21. 21

    Anderson, R. M. & May, R. M. Adv. Parasit. 24, 1–101 (1985).

    CAS  Article  Google Scholar 

  22. 22

    Anderson, R. M. in Population Dynamics of Infectious Diseases: Theory and Application (ed. Anderson, R. M.) Ch. 3 (Chapman & Hall, London, 1982).

    Google Scholar 

  23. 23

    Anderson, R. M. & May, R. M. Science 215, 1053–1060 (1982).

    ADS  MathSciNet  CAS  Google Scholar 

  24. 24

    Skamene, E., Kongshaun, P. A. L. & Landy, M. (eds) Genetic Control of Natural Resistance to Infection and Malignancy (Academic, New York, 1980).

  25. 25

    Wakelin, D. in Animal Models in Parasitology (ed. Owen, D. G.) 53–63 (Macmillan, London, 1982).

    Google Scholar 

  26. 26

    Bickle, Q., Long, E., James, E., Daenhoff, M. & Festing, M. Expl Parasit. 50, 222–232 (1980).

    CAS  Article  Google Scholar 

  27. 27

    Abdel-Salem, E., Ishaac, S. & Mahmoud, A. A. F. J. Immun. 123, 1829–32 (1979).

    Google Scholar 

  28. 28

    Bodmer, W. F. J. R. Coll. Phys. 14, 43–50 (1980).

    CAS  Google Scholar 

  29. 29

    Sadun, E. H. & Vajrashira, S. Am. J. trop. Med. Hyg. 2, 286–297 (1953).

    CAS  Article  Google Scholar 

  30. 30

    Carr, H. P. Am. J. Hyg. 6, 42–61 (1926).

    Google Scholar 

  31. 31

    Pesigan, T. P. et al. Bull. Wld Hlth Org. 18, 345–455 (1958).

    CAS  Google Scholar 

  32. 32

    Siongok, T. K. A. et al. Am. J. trop. Med. Hyg. 25, 273–284 (1976).

    Article  Google Scholar 

  33. 33

    Abdel-Wahab, M. F. et al. Am. J. trop. Med. Hyg. 29, 868–874 (1980).

    CAS  Article  Google Scholar 

  34. 34

    Anderson, R. M. Lect. Notes Biomath. 39, 278–322 (1980).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderson, R., May, R. Herd immunity to helminth infection and implications for parasite control. Nature 315, 493–496 (1985). https://doi.org/10.1038/315493a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.