Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry

Abstract

Acetaldehyde and acetone are expected to be formed as trace gases in the free troposphere from photochemical conversion of nonmethane hydrocarbons and to represent key precursors of peroxyacetyl nitrate (PAN)1–5. PAN is important as a potential organic reservoir1–5 for odd N and thus as a vehicle for odd N transport in the troposphere or even from the troposphere to the stratosphere. As PAN suffers from thermal decomposition in the lower troposphere, its transport into the stratosphere relies on its formation in the upper troposphere where temperatures are sufficiently low to prevent thermal decomposition. Neither PAN nor its key precursors, however, have been observed in the free troposphere and it is difficult, therefore, to assess the potential impact of non-methane hydrocarbons on upper tropospheric and stratospheric ozone1–5. An indication of the presence of acetone around the tropopause level was first obtained recently from ambient positive-ion composition measurements6. Here, we report on a search for these trace gases and other species with large proton affinities in the tropopause using aircraft-borne active chemical ionization mass spectrometry (ACIMS), a novel method for atmospheric trace gas detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singh, H. B. & Hanst, P. L. Geophys. Res. Lett. 8, 981–944 (1981).

    ADS  Google Scholar 

  2. Crutzen, P. J. A. Rev. Earth planet. Sci. 7, 443 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Aikin, A. C., Herman, J. R., Maier, E. J. & McQuillan, C. J. J. geophys. Res. 87, 3105–3118 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Aikin, A. C., Herman, J. R., Maier, E. J. & McQuillan, C. J. Planet. Space Sci. 31, 1075–1082 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Brewer, D. A., Augustsson, T. R. & Levine, J. S. J. geophys. Res. 88, 6683–6695 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Hauck, G. & Arnold, F. Nature 311, 547–550 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Knop, G. & Arnold, F. Geophys. Res. Lett. (in the press).

  8. Arnold, F., Hettmann, H. & Oberfrank, K. Planet. Space Sci. 32, 1567–1576 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Bohme, D. K., Mackay, G. I. & Tanner, S. D. J. Am. chem. Soc. 101, 3724 (1979).

    Article  CAS  Google Scholar 

  10. Arnold, F., Böhringer, H. & Henschen, G. Geophys. Res. Lett. 5, 653–656 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Henschen, G. & Arnold, F. Geophys. Res. Lett. 8, 999–1001 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Arijs, E., Nevejans, D. & Ingels, J. Nature 303, 314–316 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Snider, J. R. & Dawson, G. A. Geophys. Res. Lett. 11, 241–242 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Hoell, J. M., Hanvard, C. N. & Williams, B. S. Geophys. Res. Lett. 7, 313–316 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Georgii, H. W. & Müller, W. J. Tellus 26, 180–184 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Penkett, S. A. in Atmospheric Chemistry (ed. Goldberg, E. D.) (Springer, Heidelberg-New York, 1982).

    Google Scholar 

  17. Schlager, H. & Arnold, F. Planet. Space Sci. (submitted).

  18. Brasseur, G., Arijs, E., de Rudder, A., Nevejans, D. & Ingels, I. Geophys. Res. Lett. 10, 725–728 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Hamm, S., Hahn, J., Helas, G. & Warneck, P. Geophys. Res. Lett. (in the press).

  20. Arnold, F. Nature 284, 610–611 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Arnold, F. Nature 299, 134–137 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Gidel, L. T., Crutzen, P. J. & Fishman, J. J. geophys. Res. 88, 6622–6640 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, F., Hauck, G. Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry. Nature 315, 307–309 (1985). https://doi.org/10.1038/315307a0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315307a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing