Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure of the α-subunit of transducin and its relationship to ras proteins

Abstract

A group of membrane-associated guanine nucleotide binding proteins (G-proteins) are essential for transducing signals generated at cell-surface receptors into changes in cellular function and metabolism1. These proteins are a complex of three subunits designated α, β and γ. The α-subunit is responsible for binding guanine nucleotides and seems to be characteristic of each protein. Transducin, a member of this protein family, mediates visual transduction by coupling the signal of photolysed rhodopsin with activation of a cyclic GMP phosphodiesterase2. We have now cloned and sequenced the complementary DNA encoding the α-subunit of bovine retinal transducin and from this we have deduced the complete amino-acid sequence. The transducin α-subunit shares several homologous amino-acid sequences with ras gene products. The homologous segments correspond mostly to the regions thought to be involved in the guanine nucleotide binding and GTPase activity of ras proteins and to the ADP-ribosylation sites of the transducin α-subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilman, A. G. Cell 36, 577–579 (1984).

    Article  CAS  Google Scholar 

  2. Stryer, L. Cold Spring Harb. Symp. quant. Biol. 48, 841–852 (1983).

    Article  CAS  Google Scholar 

  3. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  4. Helfman, D. M., Feramisco, J. R., Fiddes, J. C., Thomas, G. P. & Hughes, S. H. Proc. natn. Acad. Sci. U.S.A. 80, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  6. Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).

    Article  CAS  Google Scholar 

  7. Hanahan, D. & Meselson, M. Gene 10, 63–67 (1980).

    Article  CAS  Google Scholar 

  8. Baehr, W. Morita, E. A., Swanson, R. J. & Applebury, M. L. J. biol. Chem. 257, 6452–6460 (1982).

    CAS  PubMed  Google Scholar 

  9. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Proc. natn. Acad. Sci. U.S.A. 76, 5355–5359 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Shih, T. Y., Papageorge, A. G., Stokes, P. E., Weeks, M. O. & Scolnick, E. M. Nature 287, 686–691 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Willingham, M. C., Pastan, I., Shih, T. Y. & Scolnick, E. M. Cell 19, 1005–1014 (1980).

    Article  CAS  Google Scholar 

  13. McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Nature 310, 644–649 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Gay, N. J. & Walker, J. E. Nature 301, 262–264 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Wierenga, R. K. & Hol, W. G. J. Nature 302, 842–844 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Shih, T. Y., Stokes, P. E., Smythers, G. W., Dhar, R. & Oroszlan, S. J. biol. Chem. 257, 11767–11773 (1982).

    CAS  PubMed  Google Scholar 

  17. Leberman, R. & Egner, U. EMBO J. 3, 339–341 (1984).

    Article  CAS  Google Scholar 

  18. Arai, K. et al. Proc. natn. Acad. Sci. U.S.A. 77, 1326–1330 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Tabin, C. J. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Taparowsky, E. et al. Nature 300, 762–765 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Yuasa, Y. et al. Nature 303, 775–779 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Santos, E., Reddy, E. P., Pulciani, S., Feldmann, R. J. & Barbacid, M. Proc. natn. Acad. Sci. U.S.A. 80, 4679–4683 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Shimizu, K. et al. Nature 304, 497–500 (1983).

    Article  ADS  CAS  Google Scholar 

  25. McGrath, J. P. et al. Nature 304, 501–506 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Taparowsky, E., Shimizu, K., Goldfarb, M. & Wigler, M. Cell 34, 581–586 (1983).

    Article  CAS  Google Scholar 

  27. Sukumar, S., Notario, V., Martin-Zanca, D. & Barbacid, M. Nature 306, 658–661 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Fasano, O. et al. Proc. natn. Acad. Sci. U.S.A. 81, 4008–4012 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Van Dop, C., Tsubokawa, M., Bourne, H. R. & Ramachandran, J. J. biol. Chem. 259, 696–698 (1984).

    CAS  PubMed  Google Scholar 

  30. Manning, D. R., Fraser, B. A., Kahn, R. A. & Gilman, A. G. J. biol. Chem. 259, 749–756 (1984).

    CAS  PubMed  Google Scholar 

  31. Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L. & Lowy, D. R. EMBO J. 3, 2581–2585 (1984).

    Article  CAS  Google Scholar 

  32. Chou, P. Y. & Fasman, G. D. A. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  33. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  34. Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D. & Gilman, A. G. Science 226, 860–862 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Reddy, V. B. et al. Science 200, 494–502 (1978).

    Article  ADS  CAS  Google Scholar 

  36. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  37. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  38. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  39. Noda, M. et al. Nature 312, 121–127 (1984).

    Article  ADS  CAS  Google Scholar 

  40. Köhler, G. & Milstein, C. Nature 256, 495–497 (1975).

    Article  ADS  Google Scholar 

  41. Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).

    Article  ADS  CAS  Google Scholar 

  42. Hewick, R. M., Hunkapiller, M. W., Hood, L. E. & Dreyer, W. J. J. biol. Chem. 256, 7990–7997 (1981).

    CAS  PubMed  Google Scholar 

  43. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  44. Hunkapiller, M. W., Lujan, E., Ostrander, F. & Hood, L. E. Meth. Enzym. 91, 227–236 (1983).

    Article  CAS  Google Scholar 

  45. McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    Article  ADS  CAS  Google Scholar 

  46. Capon, D. J., Chen, E. Y., Levinson, A. D., Seeburg, P. H. & Goeddel, D. V. Nature 302, 33–37 (1983).

    Article  ADS  CAS  Google Scholar 

  47. Dhar, R. et al. Science 217, 934–937 (1982).

    Article  ADS  CAS  Google Scholar 

  48. Tsuchida, N., Ryder, T. & Ohtsubo, E. Science 217, 937–939 (1982).

    Article  ADS  CAS  Google Scholar 

  49. Rasheed, S., Norman, G. L. & Heidecker, G. Science 221, 155–157 (1983).

    Article  ADS  CAS  Google Scholar 

  50. Neuman-Silberberg, F. S., Schejter, E., Hoffmann, F. M. & Shilo, B-Z. Cell 37, 1027–1033 (1984).

    Article  CAS  Google Scholar 

  51. DeFeo-Jones, D., Scolnick, E. M., Koller, R. & Dhar, R. Nature 306, 707–709 (1983).

    Article  ADS  CAS  Google Scholar 

  52. Powers, S. et al. Cell 36, 607–612 (1984).

    Article  CAS  Google Scholar 

  53. Gallwitz, D., Donath, C. & Sander, C. Nature 306, 704–707 (1983).

    Article  ADS  CAS  Google Scholar 

  54. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, T., Nukada, T., Nishikawa, Y. et al. Primary structure of the α-subunit of transducin and its relationship to ras proteins. Nature 315, 242–245 (1985). https://doi.org/10.1038/315242a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315242a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing