Dynein arms are oscillating force generators

Abstract

Eukaryotic flagella beat rhythmically1. Dynein is a protein that powers flagellar motion, and oscillation may be inherent to this protein2,3,4,5. Here we determine whether oscillation is a property of dynein arms themselves or whether oscillation requires an intact axoneme6, which is the central core of the flagellum and consists ofa regular array of microtubules. Using optical trapping nanometry7,8, we measured the force generated by a few dynein arms on an isolated doublet microtubule. When the dynein arms on the doublet microtubule contact a singlet microtubule and are activated by photolysis of caged ATP8, they generate a peak force of 6 pN and move the singlet microtubule over the doublet microtubule in a processive manner. The force and displacement oscillate with a peak-to-peak force and amplitude of 2 pN and 30 nm, respectively. The geometry of the interaction indicates that very few (possibly one) dynein arms are needed to generate the oscillation. The maximum frequency of the oscillation at 0.75 mM ATP is 70 Hz; this frequency decreases as the ATP concentration decreases. A similar oscillatory force is also generated by inner dynein arms alone on doublet microtubules that are depleted of outer dynein arms. The oscillation of the dynein arm may be a basic mechanism underlying flagellar beating.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Interactions of singlet microtubules with dynein arms present on doublet microtubules.
Figure 2: Force generation by dynein arms.
Figure 3: Force oscillations of dynein arms.

References

  1. 1

    Brokaw, C. J. Operation and regulation of the flagellar oscillator. Cell Movement 1, 267–279 (1989).

    Google Scholar 

  2. 2

    Shingyoji, C., Murakami, A., & Takahashi, K. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature 265, 269–270 (1977).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Takahashi, K., Shingyoji, C., & Kamimura, S. Microtubule sliding in reactivated flagella. Soc. Exp. Biol. Symp. 35, 159–177 (1982).

    CAS  Google Scholar 

  4. 4

    Shingyoji, C. & Takahashi, K. Cyclical bending movements induced locally by successive iontophoretic application of ATP to an elastase-treated flagellar axoneme. J. Cell Sci. 108, 1359–1369 (1995).

    CAS  Google Scholar 

  5. 5

    Kamimura, S. & Kamiya, R. High-frequency nanometre-scale vibration in ‘quiescent’ flagellar axonemes. Nature 340, 476–478 (1989).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Smith, E. F. & Sale, W. S. Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. Science 257, 1557–1559 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Higuchi, H., Muto, E., Inoue, Y. & Yanagida, T. Kinetics of force generation by single kinesin molecules activated by laser photolysis of caged ATP. Proc. Natl Acad. Sci. USA 94, 4359–4400 (1997).

    Article  Google Scholar 

  9. 9

    Gibbons, I. R. Dynein ATPases as microtubule motors. J. Biol. Chem. 263, 15837–15840 (1988).

    CAS  Google Scholar 

  10. 10

    Sale, W. S. & Satir, P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc. Natl Acad. Sci. USA 74, 2045–2059 (177).

  11. 11

    Fox, L. A. & Sale, W. S. Direction of force generated by the inner row of dynein arms on flagellar microtubules. J. Cell Biol. 105, 1781–1787 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Vale, R. D. & Toyoshima, Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459–469 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Sale, W. S. & Fox, L. A. Isolated β-heavy chain subunit of dynein translocates microtubules in vitro. J. Cell Biol. 107, 1793–1797 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Yokota, E. & Mabuchi, I. C/A dynein isolated from sea urchin sperm flagellar axonemes. Enzymatic properties and interaction with microtubules. J. Cell Sci. 107, 353–361 (1994).

    CAS  Google Scholar 

  15. 15

    Johnson, K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Chem. 14, 161–188 (1985).

    CAS  Article  Google Scholar 

  16. 16

    Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Ishijima, A. et al. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057–1063 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Goodenough, U. & Heuser, J. Structural comparison of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180, 1083–1118 (1984).

    CAS  Article  Google Scholar 

  20. 20

    Sale, W. S., Goodenough, U. W. & Heuser, J. E. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. J. Cell Biol. 101, 1400–1412 (1985).

    CAS  Article  Google Scholar 

  21. 21

    Wang, Z., Khan, S. & Sheetz, M. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Thomas, N. & Thornhill, R. A. The physics of biological molecular motors. J. Phys. D 31, 253–266 (1998).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Thomas, N. & Thornhill, R. A. Possible origin of tension oscillations in muscle preparations. J. Physiol. (Lond.) 491, 124P (1996).

    Google Scholar 

  24. 24

    Moss, A. G., Sale, W. S., Fox, L. A. & Witman, G. B. The α subunit of sea urchin sperm outer arm dynein mediates structural and rigor binding to microtubules. J. Cell Biol. 118, 1189–1200 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Moss, A. G., Gatti, J.-L. & Witman, G. B. The motile β/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond. J. Cell Biol. 118, 1177–1188 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Omoto, C. K. Mechanochemical coupling in eukaryotic flagella. J. Theor. Biol. 137, 163–169 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Shimizu, T., Marchese-Ragona, S. P., & Johnson, K. A. Activation of the dynein adenosinetriphosphatase by cross-linking to microtubules. Biochemistry 28, 7016–7021 (1989).

    CAS  Article  Google Scholar 

  28. 28

    Gee, M. A., Heuser, J. A. & Vallee, R. B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Gibbons, B. H. & Gibbons, I. R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J. Cell Sci. 13, 337–357 (1973).

    CAS  Google Scholar 

  30. 30

    Katayama, E. The effects of various nucleotides on the structure of actin-attached myosin subfragment-1 studied by quick-freeze deep-etch electron microscopy. J. Biochem. 106, 751–770 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Takahashi and R. A. Thornhill for discussion and critical reading of the manuscript, and E. Muto and Y. Inoue for suggestions about the preparation of microtubules. This work was supported by a Kurata Research Grant and a Grant from Nissan Science Foundation (to C.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chikako Shingyoji.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shingyoji, C., Higuchi, H., Yoshimura, M. et al. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998). https://doi.org/10.1038/31520

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.