Abstract
The climate record obtained from two long Greenland ice cores reveals several brief climate oscillations during glacial time. The most recent of these oscillations, also found in continental pollen records, has greatest impact in the area under the meteorological influence of the northern Atlantic, but none in the United States. This suggests that these oscillations are caused by fluctuations in the formation rate of deep water in the northern Atlantic. As the present production of deep water in this area is driven by an excess of evaporation over precipitation and continental runoff, atmospheric water transport may be an important element in climate change. Changes in the production rate of deep water in this sector of the ocean may push the climate system from one quasi-stable mode of operation to another.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Identifying the mechanisms of DO-scale oscillations in a GCM: a salt oscillator triggered by the Laurentide ice sheet
Climate Dynamics Open Access 03 November 2022
-
Internal multi-centennial variability of the Atlantic Meridional Overturning Circulation simulated by EC-Earth3
Climate Dynamics Open Access 21 October 2022
-
Past rapid warmings as a constraint on greenhouse-gas climate feedbacks
Communications Earth & Environment Open Access 30 August 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Berner, W., Stauffer, B. & Oeschger, H. Nature 275, 53–55 (1979).
Delmas, R., Ascencio, J-M. & Legrang, M. Nature 284, 155–157 (1980).
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–233 (1982).
Broecker, W. & Takahashi, T. Climate Processes and Climate Sensitivity (ed. Hansen, J. & Takahashi, T.) 314–326 (Geophys. Monogr. 29, Am. Geophys. U. 1984).
Sarmiento, J. & Toggweiler, R. Nature 308, 621–624 (1984).
Siegenthaler, U. & Wenk, Th. Nature 308, 624–626 (1984).
Knox, F. & McElroy, M. J. geophys. Res. 89, 4629–4637 (1984).
Emiliani, C. J. Geol. 63, 538–578 (1955).
Broecker, W. & Van Donk, J. Rev. Geophys. space Sci. 8, 169–198 (1970).
Shackleton, N. & Opdyke, N. Quat. Res. 3, 39–55 (1973).
Hays, J., Imbrie, J. & Shackleton, N. Science 194, 1121–1132 (1981).
Imbrie, J. et al. Milankovitch & Climate I (eds Berger, A. et al. ) 269–305 (Reidel, Dordrecht, 1984).
Imbrie, J. & Imbrie, J. Z. Science 207, 943–953 (1980).
Dansgaard, W. et al. Science 218, 1273–1277 (1982).
Dansgaard, W. et al. Am. Geophys. Un. Monogr. Ser. 29 (M. Ewing Symp. 3), 288–298 (1984).
Beer, J. Ann. Glaciol. 5, 16–17 (1984).
Finkel, R. & Langway, C. Earth planet. Sci. Lett. (in the press).
Siegenthaler, U., Eicher, U., Oeschger, H. & Dansgaard, W. Ann. Glaciol 5, 149–152 (1984).
Dansgaard, W., Johnsen, S., Moller, J. & Langway, C. Science 166, 377–381 (1969).
Oeschger, H. et al. Am. Geophys. Un. Monogr. Ser. 29 (M Ewing Symp. 3), 299–306 (1984).
Stauffer, B., Hofer, H., Oeschger, H., Schwander, J. & Siegenthaler, U. Ann. Glaciol. 5, 160–164 (1984).
Broecker, W. in Climate Variations and Variability: Facts and Theory (ed. Berger, A.) 109–120 (Reidel, Dordrecht, 1981).
Broecker, W. Prog. Oceanogr. 11, 151–197 (1982).
Broecker, W. Geochim. Acta 46, 1689–1705 (1982).
Broecker, W., Mix, A., Andree, M. & Oeschger, H. Nucl. Instrum. Meth. Phys. Res. B5, 331–339 (1984).
Andree, M. et al. Nucl. Instrum. Meth. Phys. Res. B5, 340–345 (1984).
Boyle, E. & Keigwin, L. Science 218, 784–787 (1982).
Duplessy, J., Chenouard, L. & Vila, F. Science 188, 1208–1209 (1975).
Kellogg, T., Duplessy, J. & Shackleton, N. Boreas 7, 61–73 (1978).
Shackleton, N. The Fate of Fossil Fuel CO2 (eds Andersen, N. & Malahoff, A.) 401–427 (Plenum, New York, 1977).
Shackleton, N., Imbrie, J. & Hall, M. A. Earth planet. Sci. Lett. 65, 233–244 (1983).
Ruddiman, W. F. & Mclntyre, A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 35, 145–214 (1981).
Watts, W. Studies in the Late-Glacial of North-west Europe (eds Lowe, J., Gray, J. & Robinson, J.) 1–21 (Pergamon, Oxford, 1980).
Wright, H. (ed.) Late-Quaternary Environments of the United States Vols 1 and 2 (University of Minnesota Press, 1983).
Anderson, T. & Macpherson, J. 6th IPC Conf. (Calgary, 1984).
Mott, J., Grant, D., Stea, R. & Ochietti, S. 6th IPC Conf. (Calgary, 1984).
Mercer, J. Arctic Alp. Res. 6, 227–236 (1969).
Van der Hammen, T., Barelds, J., de Jong, H. & De Veer, A. A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 32, 247–340 (1981).
Mercer, J. H. & Palacios, O. Geology 5, 600–604 (1977).
Wright, H. E. Quat. Res. 21, 275–285 (1984).
Heusser, C. J. Quat. Res. 22, 77–90 (1984).
Burrows, C. J. Palaeogeogr., Palaeoclimatol., Palaeoecol. 27, 287–347 (1979).
Johnsen, S., Dansgaard, W., Clausen, H. & Langway, C. Nature 235, 429–434 (1972).
Broecker, W. J. geophys. Res. 4, 3218–3226 (1979).
Climap Project Members Geol. Soc. Am. Map Chart Ser. MC-36 (1981).
Peixoto, J. & Oort, A. in Variations in the Global Water Budget (eds Street-Perott, A. et al. ) 5–65 (Reidel, Dordrecht, 1983).
Warren, B. J. mar. Res. 41, 327–347 (1983).
Stommel, H. Tellus 13, 224–230 (1961).
Rooth, Claes. Prog. Oceanogr. 11, 131–149 (1982).
Baumgartner, A. & Reichel, E. Die Weltwasserbilanz Munich (1975).
Berger, A. Astr. Astrophys. 51, 127–135 (1977).
Eicher, U., Siegenthaler, U. & Wegmuller, S. Quat. Res. 15, 160–170 (1981).
Ruddiman, W., Sancetta, C. & Mclntyre, A. Phil. Trans. R. Soc. B280, 119–142 (1977).
Birks, H. & Mathewes, R. New Phytol. 80, 455–484 (1978).
Eicher, U. & Siegenthaler, U. Physische Geographie 1, 103–110 (1982).
Denton, G. & Hughes, T. The Last Great Ice Sheets (Wiley, New York, 1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Broecker, W., Peteet, D. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation?. Nature 315, 21–26 (1985). https://doi.org/10.1038/315021a0
Issue Date:
DOI: https://doi.org/10.1038/315021a0
This article is cited by
-
Past rapid warmings as a constraint on greenhouse-gas climate feedbacks
Communications Earth & Environment (2022)
-
Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited
Nature Climate Change (2022)
-
Identifying the mechanisms of DO-scale oscillations in a GCM: a salt oscillator triggered by the Laurentide ice sheet
Climate Dynamics (2022)
-
Internal multi-centennial variability of the Atlantic Meridional Overturning Circulation simulated by EC-Earth3
Climate Dynamics (2022)
-
Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation
Communications Earth & Environment (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.