Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation

Abstract

The Late Cenozoic closure of the seaway between the North andSouth American continents is thought to have caused extensive changes in ocean circulation and Northern Hemisphere climate1,2. But the timing and consequences of the emergence of the Isthmus of Panama, which closed the seaway, remain controversial1,2,3,4,5. Here we present stable-isotope and carbonate sand-fraction records from Caribbean sediments which, when compared to Atlantic and Pacific palaeoceanographic records, indicate that the closure caused a marked reorganization of ocean circulation starting 4.6 million years ago. Shallowing of the seaway intensified the Gulf Stream and introduced warm and saline water masses to high northern latitudes. These changes strengthened deep-water formation in the Labrador Sea over the next million years — as indicated by an increased deep-water ventilation and carbonate preservation in the Caribbean Sea — and favoured early Pliocene warming of the Northern Hemisphere. The evaporative cooling of surface waters during North Atlantic Deep Water formation would have introduced moisture to the Northern Hemisphere. Although the pronounced intensification of Northern Hemisphere glaciation between 3.1 and 2.5 million years ago substantially lagged the full development of North Atlantic Deep Water formation, we propose that the increased atmospheric moisture content was a necessary precondition for ice-sheet growth, which was then triggered by the incremental changes in the Earth's orbital obliquity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeoceanographic records spanning the time interval 2–5.3 Myr.
Figure 2: Comparison of carbonate sand-fraction mass accumulation rates (sand MAR) at sites 999 (left axis) and 846 (ref. 6) (right axis) plotted versus age for the interval 2–5.3 Myr.
Figure 3: 3 Calculated obliquity amplitude fluctuations31 and the benthic oxygen isotope record of Site 65915 versus age for the past 6 Myr.

Similar content being viewed by others

References

  1. Keigwin, L. D. Isotope paleoceanography of the Caribbean and east Pacific: role of Panama uplift in late Neogene time. Science 217, 350–353 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Maier-Reimer, E., Mikolajewicz, U. & Crowley, T. J. Ocean general circulation model sensitivity experiment with an open American Isthmus. Paleoceanography 5, 349–366 (1990).

    Article  ADS  Google Scholar 

  3. Duque-Caro, H. Neogene stratigraphy, paleoceanography and paleobiology in northwest South America and the evolution of the Panama Seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 203–234 (1990).

    Article  Google Scholar 

  4. Keller, G., Zenker, C. E. & Stone, S. M. Late Neogene history of the Pacific-Caribbean gateway. J. S. Am. Earth Sci. 2, 73–108 (1989).

    Article  Google Scholar 

  5. Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M.-P. & Zhang, J. The late Miocene Panama isthmian strait. Geology 24, 687–690 (1996).

    Article  ADS  Google Scholar 

  6. Shackleton, N. J., Hall, M. & Pate, D. Pliocene stable isotope stratigraphy of Site 846. Proc. ODP Sci. Res. 138, 337–357 (1995).

    Google Scholar 

  7. Coates, A. G. et al. Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. Geol. Soc. Am. Bull. 104, 814–828 (1992).

    Article  ADS  Google Scholar 

  8. Marshall, L. G. Land mammals and the Great American Interchange. Am. Sci. 76, 380–388 (1988).

    ADS  Google Scholar 

  9. Hay, W. W. Tectonics and climate. Geol. Rundsch. 85, 409–437 (1996).

    Article  ADS  Google Scholar 

  10. Oppo, D. W. et al. Aδ13C record of Upper North Atlantic Deep Water during the past 2.6 million years. Paleoceanography 10, 372–394 (1995).

    ADS  Google Scholar 

  11. Driscoll, N. W. & Diebold, J. B. Tectonic and stratigraphic development of the eastern Caribbean: New constraints from multichannel seismic data.In Caribbean Sedimentary Basins (ed. Mann, P.) (Elsevier Spec. Publ., in the press).

  12. McCorkle, D. C. & Keigwin, L. D. Depth profiles of δ13C in bottom water and core top C. wuellerstorfi on the Ontong Java Plateau and Emperor Seamounts. Paleoceanography 9, 197–208 (1994).

    Article  ADS  Google Scholar 

  13. Kroopnick, P. M. The distribution of 13C of ΣCO2in the world ocean. Deep-Sea Res. 32, 57–84 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Bickert, T., Cordes, R. & Wefer, G. Late Pliocene to mid-Pleistocene (2.6–1.0 Ma) carbonate dissolution in the western equatorial Atlantic: Results of ODP Leg 154, Ceara Rise. Proc. ODP Sci. Res. 154((1994)).

  15. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of ODP Site 659. Paleoceanography 9, 619–638 (1994).

    Article  ADS  Google Scholar 

  16. Hodell, D. A., Müller, D. W., Ciesielski, P. F. & Mead, G. A. Synthesis of oxygen and carbon isotopic results from Site 704: Implications for major climatic-geochemical transitions during the late Neogene. Proc. ODP Sci. Res. 114, 475–480 (1991).

    Google Scholar 

  17. Shackleton, N. J. & Hall, M. A. Oxygen and carbon isotope stratigraphy of DSDP Hole 552A: Pliocene-Pleistocene glacial history. Init. Rep. DSDP 81, 599–610 (1984).

    CAS  Google Scholar 

  18. Ruddiman, W. F. et al. Proc. ODP Init. Rep. 108((1988)).

    Google Scholar 

  19. Tiedemann, R. & Franz, S. O. Deep-water circulation, chemistry, and terrigenous sediment supply in the equatorial Atlantic during the Pliocene, 3.3–2.6 Ma and 5–4.5 Ma. Proc. ODP Sci. Res. 154, 299–318 (1997).

    CAS  Google Scholar 

  20. Boyle, E. A. & Keigwin, L. D. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Heinze, C. & Crowley, T. J. Sedimentary response to ocean gateway circulation changes. Paleoceanography 12, 742–754 (1997).

    Article  ADS  Google Scholar 

  22. Wright, J. D. & Miller, K. G. Control of North Atlantic Deep Water circulation by the Greenland-Scotland Ridge. Paleoceanography 11, 157–171 (1996).

    Article  ADS  Google Scholar 

  23. Mikolajewicz, U. & Crowley, T. J. Response of a coupled ocean/energy balance model to restricted flow through the central American Isthmus. Paleoceanography 12, 429–441 (1997).

    Article  ADS  Google Scholar 

  24. Arthur, M. A. et al. Seismic stratigraphy and history of deep circulation and sediment drift development in Baffin Bay and the Labrador Sea. Proc. ODP Sci. Res. 105, 957–989 (1989).

    Google Scholar 

  25. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  ADS  Google Scholar 

  27. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  ADS  CAS  Google Scholar 

  28. France-Lanord, C. & Derry, L. A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Myhre, A. M. et al. Proc. ODP Init. Rep. 151, 1–926 (1996).

    Google Scholar 

  30. Imbrie, J. et al. On the structure and origin of major glaciation cycles, 1. linear responses to Milankovitch forcing. Paleoceanography 7, 701–738 (1992).

    Article  ADS  Google Scholar 

  31. Laskar, J., Joutel, F. & Boudin, F. Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr. Astron. Astrophys. 270, 522–533 (1993).

    ADS  Google Scholar 

  32. Li, X. S. et al. Simulating late Pliocene Northern Hemisphere climate with the LLN 2-D model. Geophys. Res. Lett. (in the press).

  33. Billups, K., Ravelo, A. C. & Zachos, J. C. Early Pliocene deep-water circulation: Stable isotope evidence for enhanced northern component deep water. Proc. ODP Sci. Res. 154, 319–330 (1997).

    CAS  Google Scholar 

  34. Sigurdsson, H. et al. Proc. ODP Init. Rep. 165, 1–674 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank R. Zahn, S. Franz, L. Keigwin, D. Oppo, N. Driscoll, R. Norris, J. McManus and T. Bickert for discussions and criticism, and S. Hustedt and A. Richter for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Haug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haug, G., Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998). https://doi.org/10.1038/31447

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing