now compared the arrangement of the nif K, D and H genes in whole filaments of *Anabaena* with that in heterocysts during their differentiation from vegetative cells. While confirming that nif K is separated from nif D/H in vegetative cells, they show that a gene rearrangement occurs within the heterocyst at a late stage in differentiation. What happens is that the 11-kilobase intervening DNA sequence between nif D/H and nif K is excised, so that the three genes become clustered and function as a single transcriptional unit, with nitrogenase structural proteins being synthesized together, and the fundamental instability in commencing, within the heterocysts. The excised portion remains in the heterocyst as an acentric. This finding is of interest not only because they emphasize the usefulness of cyanobacteria for the study of differentiation. The heterocysts of cyanobacteria such as *Anabaena*, show a distinct spatial pattern; between 8 and 10 per cent of the total cells along a filament are heterocysts and new heterocysts develop equidistantly from two existing heterocysts. That is, in some as yet unknown way, existing heterocysts can regulate the spacing pattern of new heterocysts (there is no evidence that nitrogenase is involved in the process). Furthermore, in organisms such as *Nostoc* 7524 there is evidence that with certain conditions, a cell that normally develops into a heterocyst develops instead into an akinete. The molecular events leading to the cessation of cell division and determining whether a differentiating cell regresses, or further differentiates, and if so into which cell type, is an intriguing area of cellular biology that has relevance not only to nitrogen fixation but to our basic understanding of cellular developmental biology. At a time when the oil industry is looking for new ways to improve oil recovery, the mechanism of starch deposition, which is a process that is similar to the deposition of oil in the cell, offers another potential application of the findings of cyanobacteria. An understanding of the mechanism of starch deposition in cyanobacteria could lead to the development of new methods for improving oil recovery.
the description of flow through porous materials — the percolation problem."

The experiment of Nittmann et al. is also significant in that it gives insight into the minimum requirements of a DLA-like structure. Although DLA seems quite simple, it has defied complete analysis. A major point of contention is whether noise due to the discrete nature of the particles making up the cluster dominates the dynamics. Dielectric breakdown structures have links of more-or-less fixed length and electrolytic deposits are polycrystalline. Experiments on these systems shed no light on the question. But the fluid system of Nittmann et al. is continuous. Apparently, discreteness is not essential to make a DLA-like fractal. There has been speculation that this would indicate that DLA is an example of chaos. In practical terms it may mean that solidification far from equilibrium, which can also be mapped onto DLA, could give rise to fractals — for example, if a snowflake were allowed to grow very large, it would probably be fractal, too.


L.M. Sander is in the Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120, USA.

100 Years Ago

The following account, we learn from Science, of unusual phenomena was received, March 10, at the Hydrographic Office, Washington, from the branch office in San Francisco. The barque Inga, Capt. Waters, has just arrived at Victoria from Yokohama. At midnight of February 24, in latitude 37° north, longitude 170° 15' east, the captain was aroused by the mate, and went on deck to find the sky changing to a fiery red. All at once a large mass of fire appeared over the vessel, completely blinding the spectators; and, as it fell into the sea some fifty yards to leeward, it caused a hissing sound, which was heard above the blast, and made the vessel quiver from stem to stern. Hardly had this disappeared when a lowering mass of white foam was seen rapidly approaching the vessel. The barque was struck flat aback; but, before there was time to touch a brace, the sails had filled again, and the roaring white sea had passed ahead. The master declares that the awfulness of the sight was beyond description and considers that the ship had a narrow escape from destruction.

From Nature 31 514, 2 April 1885.

Oceanography

Sonar classification of sea beds

from M.L. Somers

Although side-scan solar is used widely in both scientific and engineering investigations of the sea bed, the task of extracting a numerical classification of sea beds from the backscattered sound has proved intractable. But an experienced human observer who has had access to the results of two-dimensional sonographs and physical samples can rapidly give some qualitative classifications, so there must be some quality of the backscattering that gives the necessary clues. On page 426 of this issue, Z. Reut, N.G. Pace and M.J.P. Heaton offer a solution to the problem and a method of classification into six sea-bed types — mud, sand, clay, gravel, stones and boulders.

The backscattering of sound from the sea bed is a complicated function of the grazing angle of the sonar signal and the roughness of the sea bed, with further complications thrown in by the backscattering process (see Somers, M.L., and Stubbs, A.R. IEEE Proc. 131, Pt F, 1984). To circumvent these problems, Reut et al. have concentrated on the rate of fluctuation of the backscattered sound over short periods of time and have applied cepstrum analysis, for which Reul offers a solution to the problem and a method of classification into six sea-bed types — mud, sand, clay, gravel, stones and boulders.

The method requires fairly careful normalization, for which Reut et al. have chosen to use cepstrum analysis, an outline of which is given in their paper. By taking the logarithm of the power spectrum, all considerations of phase can be ignored, so ensuring that when the inverse transform is taken the result peaks at, or near to, zero time delay. The effect of taking logs before doing the inverse transform is to emphasize any d.c. level in the signal, which shows up as a large peak at zero frequency in the power spectrum. The two-power cepstrum integral parameters give a measure of how closely the cepstrum is confined to low time-lag values.

Justification of the method comes both from the foregoing qualitative arguments and from the fact that it seems to work — 120 sea-bed areas are correctly classified into the six types with the only overlap being between gravel and stone types. A similar result could possibly be obtained by applying automatic gain control, removing the mean and taking the auto-correlation function, though this would be computationally less attractive.

It would be interesting to see the method applied to a wider selection of sea-bed echoes using a number of frequencies instead of the single 48-kHz frequency used by the authors. An application which comes to mind concerns the problem of mapping and assessing fields of manganese nodules in oceans that are several thousand metres deep. This will require low-frequency sound, such as used in the long-range side-scan sonar, GLORIA II. Manganese nodule fields occur very widely in the Abyssal Plain regions of the deep ocean and should be visible on a GLORIA record. If so, it might at least be possible to make a qualitative classification, and perhaps even to give a measure of nodule abundance.

Side-scan sonar requires oblique incidence for its best visual effect, so that depth/range ratios need to be less than about 0.2. But most systems working from the surface in deep water, or at high frequencies in shallow water, operate near vertical incidence and the backscattering process is somewhat different. It will be interesting to see how the classification system of Reut et al. performs in such circumstances.

Turning from their concern with problems of propagation and surface reverberation, the underwater-acoustics community is devoting increasing attention to sonar scattering. Many theoretical papers and some reporting measurements or equipment will be given at the International Conference on Scattering Phenomena on 2-3 April at the Admiralty Research Establishment, Portland, UK. Various applications of the analysis of sea-bed backscattering, both civil and military, are being explored. Of the civil applications, many involve the estimation of resources. Manganese nodules have already been mentioned. Gravel provides a second example. Over ten per cent of the gravel used in the United Kingdom is dredged from the sea bed, and a rapid and reliable means of detecting suitable gravel fields would be of considerable value. The accuracy of acoustic logs for ships that measure their speed by observing the Doppler shift of sound backscattered from the sea bed should also be improved by application of the new system of classification.

M.L. Somers is at the Institute of Oceanographic Sciences, Wormley, Godalming, Surrey GU8 5UB, UK.

©1985 Nature Publishing Group