Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A test for intron function in the yeast actin gene


Many eukaryotic genes contain intervening sequences (IVS)1,2, but the rationale for their existence remains a mystery. Previous studies done in our laboratory demonstrated that the intron in a yeast tRNATyr gene, SUP6, does have a function3,4. We used the same approach to determine the role of introns in nuclear genes encoding messenger RNAs. A single actin gene with one intron exists in Saccharomyces cerevisiae5,6. The level of actin in yeast appears to be crucial to viability: either too much or too little actin inhibits growth7. Therefore, small effects on synthesis of actin protein resulting from the removal of the actin gene intron would be expected to cause measurable changes in cell growth. In the present study, an intron-deleted actin gene was constructed in vitro and was used to replace the single resident actin gene in a haploid strain. Analysis of the cells carrying the intron-deleted actin gene shows that the intervening sequence is not essential for actin gene expression.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Abelson, J. A. Rev. Biochem. 48, 1035–1069 (1979).

    CAS  Article  Google Scholar 

  2. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    CAS  Article  Google Scholar 

  3. Wallace, R. B. et al. Science 209, 1396–1400 (1980).

    ADS  CAS  Article  Google Scholar 

  4. Johnson, P. F. & Abelson, J. Nature 302, 681–687 (1983).

    ADS  CAS  Article  Google Scholar 

  5. Gallwitz, D. & Sures, I. Proc. natn. Acad. Sci. U.S.A. 77, 2546–2550 (1980).

    ADS  CAS  Article  Google Scholar 

  6. Ng, R. & Abelson, J. Proc. natn. Acad. Sci. U.S.A. 77, 3912–3916 (1980).

    ADS  CAS  Article  Google Scholar 

  7. Shortle, D., Haber, J. & Botstein, D. Science 217, 371–373 (1982).

    ADS  CAS  Article  Google Scholar 

  8. Larson, G. P., Itakura, K., Ito, H. & Rossi, J. Gene 22, 31–39 (1983).

    CAS  Article  Google Scholar 

  9. Rothstein, R. Meth. Enzym. 101, 202–211 (1983).

    CAS  Article  Google Scholar 

  10. Jacq, C. et al. Mitochondrial Genes (eds Slonimski, P. et al.) 155–183 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  11. Gallwitz, D., Perrin, F. & Seidel, R. Nucleic Acids Res. 9, 6339–6350 (1981).

    CAS  Article  Google Scholar 

  12. Gallwitz, D., Donath, C. & Sander, C. Nature 306, 704–707 (1983).

    ADS  CAS  Article  Google Scholar 

  13. McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    ADS  CAS  Article  Google Scholar 

  14. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ng, R., Domdey, H., Larson, G. et al. A test for intron function in the yeast actin gene. Nature 314, 183–184 (1985).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing