Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two homoeo box loci mapped in evolutionarily related mouse and human chromosomes

Abstract

The homoeo box is a 180-base pair (bp) DNA sequence conserved in Drosophila homoeotic genes, which regulate early development1,2. These DNA sequences are present in open reading frames and have been identified in specific gene transcripts in Drosophila and Xenopus embryos3–5; they possess structural features in common with genes encoding some DNA-binding proteins6,7. Homologous homoeo box sequences have been detected in species ranging from insects and annelids to vertebrates2,5,8. The high degree of sequence conservation (70–90%) among different species suggests a strong evolutionary relationship and implies a common role in embryonic development. To test this hypothesis, one approach we have used is to examine the patterns of genetic organization of homoeo box sequences in mouse and human for any similarities; the second approach is to localize the chromosomal map positions of homoeo box sequences in the two species. A similar genomic organization and chromosomal distribution of homoeo box sequences would argue for a conserved function and might shed light on their mechanism of action. Here, we describe experiments which show that two homoeo box loci map, respectively, to evolutionarily related regions on mouse chromosome 11 and human chromosome 17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McGinnis, W., Levine, M., Hafen, E., Kuroiwa, A. & Gehring, W. J. Nature 308, 428–433 (1984).

    Article  ADS  CAS  Google Scholar 

  2. McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. & Gehring, W. J. Cell 37, 403–408 (1984).

    Article  CAS  Google Scholar 

  3. Hafen, E., Levine, M., Garber, R. L. & Gehring, W. J. EMBO J. 2, 617–623 (1983).

    Article  CAS  Google Scholar 

  4. Hafen, E., Kuroiwa, A. & Gehring, W. J. Cell 37, 833–841 (1984).

    Article  CAS  Google Scholar 

  5. Carrasco, A. E., McGinnis, W., Gehring, W. J. & DeRobertis, E. M. Cell 37, 409–414 (1984).

    Article  CAS  Google Scholar 

  6. Shepherd, J. C. W., McGinnis, W., Carrasco, A. E., DeRobertis, E. M. & Gehring, W. J. Nature 310, 70–71 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Laughon, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Levine, M., Rubin, G. M. & Tjian, R. Cell 38, 667–673 (1984).

    Article  CAS  Google Scholar 

  9. McGinnis, W., Hart, C. P., Gehring, W. J. & Ruddle, F. H. Cell 38, 675–680 (1984).

    Article  CAS  Google Scholar 

  10. Rabin, M. et al. Cytogenet. Cell Genet. 38, 70–72 (1984).

    Article  CAS  Google Scholar 

  11. Barker, P. E. et al. Proc. natn. Acad. Sci. U.S.A. 81, 5826–5830 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Francke, U. & Taggart, R. T. Proc. natn. Acad. Sci. U.S.A. 77, 3595–3599 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Roderick, T. H. et al. Cytogenet. Cell Genet. 37, 312–316 (1984).

    Article  CAS  Google Scholar 

  14. Kamarck, M. E., Barker, P. E., Miller, R. L. & Ruddle, F. H. Expl Cell Res. 152, 1–14 (1984).

    Article  CAS  Google Scholar 

  15. Church, R. L., SundarRaj, N. & McDougall, J. K. Cytogenet. Cell Genet. 27, 24–30 (1980).

    Article  CAS  Google Scholar 

  16. Huerre, C. et al. Proc. natn. Acad. Sci. U.S.A. 79, 6627–6630 (1982).

    Article  ADS  CAS  Google Scholar 

  17. McDougall, J. K., Kucherlapati, R. & Ruddle, F. H. Nature new Biol. 245, 172–175 (1973).

    Article  CAS  Google Scholar 

  18. Elsevier, S. M. et al. Nature 251, 633–636 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Gross, S. Cytogenet. Cell Genet. 25, 161–164 (1979).

    Google Scholar 

  20. George, D. L., Phillips, J. A. III, Francke, U. & Seeburg, P. H. Hum. Genet. 57, 138–141 (1981).

    Article  CAS  Google Scholar 

  21. Harper, M. E., Barrera-Saldana, H. A. & Saunders, G. F. Am. J. hum. Genet. 34, 227–234 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zabel, B. U., Fournier, R. E. K., Lalley, P. A., Naylor, S. L. & Sakaguchi, A. Y. Proc. natn. Acad. Sci. U.S.A. 81, 4874–4878 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Frykberg, L. et al. Cell 32, 227–238 (1983).

    Article  CAS  Google Scholar 

  24. Kozak, C. A. & Ruddle, F. H. Somat. Cell Genet. 3, 121–133 (1977).

    Article  CAS  Google Scholar 

  25. McBreen, P., Orkwiszewski, K. G., Chern, C. J., Mellman, W. J. & Croce, C. M. Cytogenet. Cell Genet. 19, 7–13 (1977).

    Article  CAS  Google Scholar 

  26. Green, M. C. Genetic Variants and Strains of the Laboratory Mouse (Fischer, New York, 1981).

    Google Scholar 

  27. Aleck, K. et al. Am. J. hum. Genet. 36, 41S (1984).

    Google Scholar 

  28. Handmaker, S. D., Robinson, L. D., Campbell, J. A., Chinwah, O. & Gorlin, R. J. Birth Defects orig. Artic. Ser. 13, (3D), 79–90 (1977).

    CAS  PubMed  Google Scholar 

  29. Gorlin, R. J. & Langer, L. O. Jr Birth Defects orig. Artic Ser. 14, (6B) 193–197 (1978).

    CAS  PubMed  Google Scholar 

  30. Svejcar, J. Clin. Genet. 23, 369–375 (1983).

    Article  CAS  Google Scholar 

  31. Rigby, P. W. J., Dieckman, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  32. Szabo, P., Elder, R., Steffensen, D. M. & Uhlenbeck, O. C. J. molec. Biol. 115, 539–563 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabin, M., Hart, C., Ferguson-Smith, A. et al. Two homoeo box loci mapped in evolutionarily related mouse and human chromosomes. Nature 314, 175–178 (1985). https://doi.org/10.1038/314175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing