Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Action potential mutations stop a biological clock in Drosophila

Abstract

The Drosophila melanogaster male produces a species-specific courtship song by wing vibration. The most conspicuous feature of the song is a series of pulses with a 30–40-ms interpulse interval (IPI)1,2 which oscillate in wild-type males with a period of 50–60 s (ref. 3). This short-term biological rhythm in IPI is influenced by several gene mutations at the period (per) locus, which alter the normal 24-h free-running period of the circadian clock4 and have corresponding effects on the song cycle3. The present study reveals that, under restrictive conditions, temperature-sensitive mutations which affect neuronal membrane excitability seem to stop the biological clock underlying the fruitfly's song rhythm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ewing, A. W. & Bennett-Clark, H. C. Behaviour 31, 287–301 (1968).

    Article  Google Scholar 

  2. von Schilcher, F. Anim. Behav. 24, 18–26 (1976).

    Article  Google Scholar 

  3. Kyriacou, C. P. & Hall, J. C. Proc. natn. Acad. Sci. U.S.A. 77, 6729–6733 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Konopka, R. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 68, 2112–2116 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Wu, C. F., Ganetsky, B., Jan, L. Y., Jan, Y. N. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 75, 4047–4051 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Suzuki, D. T., Grigliatti, T. & Williamson, R. Proc. natn. Acad. Sci. U.S.A. 68, 890–893 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Wu, C. F. & Ganetzky, B. Nature 28, 814–816 (1980).

    Article  ADS  Google Scholar 

  8. Kimura, J. E. & Meves, H. J. Physiol., Lond. 289, 479–500 (1979).

    Article  CAS  Google Scholar 

  9. Sevcik, C. J. Physiol., Lond. 352, 187–194 (1982).

    Article  Google Scholar 

  10. Fuzeau-Braesch, S. & Nicholas, N. Comp. Biochem. Physiol. 68 A, 289–297 (1981).

    Article  Google Scholar 

  11. Clark, M. A. & Eaton, D. C. J. Neurobiol. 14, 237–250 (1983).

    Article  CAS  Google Scholar 

  12. Pittendrigh, C. S. Proc. natn. Acad. Sci. U.S.A. 40, 1018–1029 (1954).

    Article  ADS  CAS  Google Scholar 

  13. Saunders, D. S. Insect Clocks 2nd edn (Pergamon, Oxford, 1982).

    Google Scholar 

  14. Takahashi, J. S. & Zatz, M. Science 217, 1104–1111 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Jackson, F. R., Wilson, S. D., Strichartz, G. R. & Hall, L. M. Nature 308, 189–191 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Kauvar, L. M. Molec. gen. Genet. 187, 172–173 (1982).

    Article  CAS  Google Scholar 

  17. Hall, L. M., Wilson, S. D., Gischier, J., Martinez, N. & Strichartz, G. R. Ciba Fdn Symp. 88, 207–220 (1982).

    CAS  Google Scholar 

  18. Eskin, A. & Corrent, G. J. comp. Physiol. 117, 1–21 (1977).

    Article  CAS  Google Scholar 

  19. Eskin, A. J. Neurobiol. 13, 241–249 (1981).

    Article  Google Scholar 

  20. Eskin, A. J. Neurobiol. 8, 273–299 (1977).

    Article  CAS  Google Scholar 

  21. Hall, J. C. in Results and Problems in Cell Differentiation Vol. 9 (ed. Gehring, W. J.) (Springer, Berlin, 1978).

    Google Scholar 

  22. Konopka, R., Wells, S. & Lee, T. Molec. gen. Genet. 190, 284–288 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyriacou, C., Hall, J. Action potential mutations stop a biological clock in Drosophila. Nature 314, 171–173 (1985). https://doi.org/10.1038/314171a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314171a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing