Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Timing of deglaciation from an oxygen isotope curve for Atlantic deep-sea sediments

Abstract

The exact timing of deglaciation is an important issue in the context of climatic feedback involving the deglacial rise in atmospheric CO2 seen in ice cores1–4. We have produced evidence, from box cores taken in the equatorial Atlantic, that the last deglaciation occurred in two major steps which were separated by a brief pause5. Here we propose that this pause is equivalent to the period of glacial readvance known as ‘Younger Dryas’, which lasted from about 11 to 10 kyr BP. If our correlation is correct, then the initiation of deglaciation occurred after 14 kyr BP, which disagrees with most other deep-sea timescales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Delmas, R. J., Ascencio, J.-M. & Legrand, M. Nature 284, 155–157 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Broecker, W. Geochim. cosmochim. Acta 46, 1689–1705 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. Takahashi, T.) 337–351 (American Geophysical Union, Washington DC, 1984).

    Book  Google Scholar 

  5. Berger, W. H., Killingley, J. S., Metzler, C. V. & Vincent, E. Quat. Res. (in the press).

  6. Duplessy, J. C., Delibrias, G., Turon, J. L., Pujol, C. & Duprat, J. Palaeogeogr., Palaeo-climatol., Palaeoecol. 35, 121–144 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Berger, W. H. in Climate in Earth History (eds Berger, W. H. & Crowell, J.) 43–54 (National Academy Press, Washington DC, 1982).

    Google Scholar 

  8. Kennett, J. P. & Shackleton, N. J. Science 188, 147–150 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Leventer, A., Williams, D. F. & Kennett, J. P. Mar. Geol. 53, 23–40 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Ruddiman, W. F. & McIntyre, A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 35, 145–214 (1981).

    Article  CAS  Google Scholar 

  11. Kerr, R. A. Science 221, 143–144 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Ruddiman, W. F. & Duplessy, J.-C. Quat. Res. (in the press).

  13. Berger, W. H. Sver. geol. Unders., Afh. C76, 270–280 (1982).

    Google Scholar 

  14. Emiliani, C. et al. Science 189, 1083–1088 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Sarnthein, M., Erlenkeuser, H. & Zahn, R. Act. Colloq. Int. CNRS, Bordeaux, Bull. Inst. Géol. Bassin d'Aquitaine 31, 393–407 (1982).

    Google Scholar 

  16. Peng, T.-H., Broecker, W. S., Kipphut, G. & Shackleton, N. in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 355–373 (Plenum, New York, 1977).

    Book  Google Scholar 

  17. Berger, W. H. & Killingley, J. S. Mar. Geol. 45, 93–125 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Jones, G. A. & Ruddiman, W. F. Quat. Res. 17, 148–172 (1982).

    Article  CAS  Google Scholar 

  19. Somayajulu, B. L. K., Sharma, P. & Berger, W. H. Mar. Geol. 54, 169–180 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Suess, H. E. Science 123, 355–357 (1956).

    Article  ADS  CAS  Google Scholar 

  21. Eriksson, K. G. & Olsson, I. U. Bull. Geol. Inst. Uppsala 42, 1–16 (1963).

    Google Scholar 

  22. Berger, W. H. Deep-Sea Res. 25, 473–480 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Mangerud, J., Andersen, S. T., Berglund, B. E. & Bonner, J. J. Boreas 3, 109–128 (1974).

    Article  Google Scholar 

  24. Ruddiman, W. F. & McIntyre, A. Quat. Res. 3, 117–130 (1973).

    Article  Google Scholar 

  25. Johnson, R. F. Scripps Inst. of Oceanogr. Ref. Ser. 80–18, 1–218 (1980).

    Google Scholar 

  26. Berger, W. H. & Killingley, J. S. J. mar. Res. 40, 27–38 (1982).

    Google Scholar 

  27. Keir, R. S. Earth planet. Sci. Lett. 64, 445–456 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, W., Killingley, J. & Vincent, E. Timing of deglaciation from an oxygen isotope curve for Atlantic deep-sea sediments. Nature 314, 156–158 (1985). https://doi.org/10.1038/314156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing