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Is gravitational energy real? 
The long-recognized problem of Einstein's theory of gravitation, that gravitational energy is 
not unambiguously defined, may be unavoidable. But people keep trying. 
BETWEEN Newton's time and the 
beginning of the twentieth century, most 
people were broadly speaking content with 
the notion of the potential energy of an 
object in a gravitational field. Following 
the Galileo legend, one had merely to drop 
a stone from a height to see its potential 
energy converted into kinetic energy. By the 
nineteenth century, the interplay between 
the two had become a way of solving 
practical problems, most elegantly by 
means of hamiltonian mechanics, but more 
crudely (as with a falling stone) by equating 
decreases of potential energy with 
concomitant increases of kinetic energy. 
But Einstein changed all that. 

It is paradoxical that the best theory of 
gravitation yet has thrown gravitational 
potential energy into a confusing limbo. R. 
Penrose, in a recent paper (Proc. R. Soc. 
A381, 53; 1982) puts the point directly, if 
inelegantly, by noting that "it is perhaps 
ironic that energy conservation, a 
paradigmatic physical concept arising 
initially from Galileo's (1638) studies of the 
motion of bodies under gravity ... should 
nevertheless have found no universally 
applicable formulation, within Einstein's 
theory, incorporating the energy of gravity 
itself". But people keep trying to define 
gravitational energy. The latest attempt of 
this kind, by D. Lynden-Bell and J. Katz 
(Mon. Not. R. astr. Soc 213, 21; 1985), is 
intriguing chiefly as an illustration of the 
difficulties. 

The underlying problem with gravi
tational potential energy in general 
relativity stems from the principle of 
equivalence, which logically enters the 
theory as an assumption, and which has as 
one of its consequences that an observer 
falling freely in a gravitational field will 
have the illusion that the field does not 
exist. In other words, it is always possible 
to get rid of a gravitational field by the 
choice of a suitably accelerated frame of 
reference. The principle of equivalence 
leads to the conclusion that free-falling 
objects always have the same acceleration 
(which is Galileo's observation). But if 
gravitational acceleration can always be 
transformed away, gravitational potential 
energy cannot have the significance 
attributed to it in classical mechanics. 

Einstein naturally took up the question 
of how the classical conservation laws 
would be transferred into his new 
formalism. One of the frustrations that 
quickly became apparent is that this seemed 
not to be unambiguously possible, at least 

in the strict sense that the representation 
of a physical quantity should be 
independent of the coordinates in which 
this is done (or, technically, that its 
numerical value at any point should 
transform with changes of coordinates as 
does a tensor quantity). 

The situation is really rather odd. What 
Einstein's general theory does is to relate 
the quantities describing the curvature of 
four-dimensional space (and which 
themselves are functions of the space and 
time coordinates) to a quantity called the 
energy-momentum tensor, a true physical 
quantity (in the sense of being a tensor and 
thus coordinate-free) which represents the 
energy and the momentum locked up both 
in matter and in fields other than the 
gravitational field, electromagnetism for 
example. Einstein's problem, in the years 
succeeding 1917, was to find some way of 
representing the total energy of a system 
- matter-energy, the energy of the 
electromagnetic field and of other fields as 
well as the energy of the gravitational field, 
together with the modern analogue of the 
old potential energy - so as then to show 
that this quantity is conserved. 

Einstein recognized that his solution is 
not ideal. The best candidate for a con
served quantity representing energy is not 
strictly a tensor but, a construct from the 
quantities describing the curvature of 
space-time which is not a tensor in the strict 
sense but; a pseudo-tensor, viz a quantity 
depending on the coordinate system is 
Einstein's pseudo-tensor, not a quantity 
that exhibits on a microscopic scale the 
conservation of energy and of momentum. 

So is there a buried scandal in general 
relativity? Einstein's failure ( often 
repeated) to find a quantity representing 
energy and momentum whose microscopic 
conservation is self-evident does not imply 
that energy and momentum are not 
macroscopically conserved. The difficulty 
that immediately raises its head is that the 
verification of macroscopic energy 
conservation must necessarily be possible 
only within the framework of a particular 
macroscopic description of the Universe. 
And many model universes in which energy 
is not conserved, which are nevertheless in
consistent with energy conservation, have 
been constructed. 

Are there some circumstances in which 
the definition of potential energy, or the 
energy of the gravitational field, is possible 
in terms of the variables that define that 
field? This is the path that Lynden-Bell and 

Katz have followed. Beginning with an 
observation due to J .A. Wheeler that the 
problem of the unambiguous definition of 
potential energy may be simpler in the 
conditions in which spherical symmetry 
applies, they seek to define the gravitational 
field energy unambiguously in such 
circumstances. 

The argument goes like this. In a system 
in which there are only gravitating masses, 
there must be some quantity, a function of 
the space-time coordinates, whose integral 
over any space-like surface (say that cor
responding to the present time) is equal to 
all the energy associated with the mass, its 
rest-energy and momentum, and its gravita
tional potential energy. The equations of 
general relativity allow calculation of the 
rest-energy from the descriptors of the 
curvature, so that the difference between 
the surface integral and the mass within the 
surface must be the gravitational potential 
energy. Thus, by considering the difference 
between the surface integral on two nearby 
space-like surfaces, it should be possible to 
define the density of gravitational potential 
energy, the field energy. Lynden-Bell and 
Katz pin down their calculation by making 
an artificial cut in space-time along some 
space-like surface in which, without loss of 
generality, they can suppose that space
time is flat. 

Physically, the result makes sense. The 
energy locked up in the gravitational field 
(as distinct from the mass itself) does 
indeed decrease with distance from massive 
objects. Significantly, the field around a 
black hole turns out to contain the whole 
energy of the condensed object. This fits 
in well with the views of those who hold 
that the significant consequences of black 
holes are external. Lynden-Bell and Katz 
say that their result differs from that of the 
"Penrose school", a reference to Penrose's 
elegant generalization of general relativity 
to accommodate particles with spin. That, 
according to Lynden-Bell and Katz, puts 
all the energy of a black hole inside it. 

The implications of this calculation will 
depend on whether it can be generalized to 
universes that are neither spherically 
symmetrical nor static. There seems to be 
good reason for hoping that something can 
be done. But if part of the essence of 
general relativity is that potential energy 
cannot be unambiguously defined except by 
reference to large-scale structure, there is 
bound always to be a degree of 
arbitrariness in the way in which the 
concept arises. John Maddox 
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