Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter

Abstract

Although promoter regions for many plant nuclear genes have been sequenced, identification of the active promoter sequence has been carried out only for the octopine synthase promoter1. That analysis was of callus tissue and made use of an enzyme assay. We have analysed the effects of 5′ deletions in a plant viral promoter in tobacco callus as well as in regenerated plants, includ ing different plant tissues. We assayed the RNA transcription product which allows a more direct assessment of deletion effects. The cauliflower mosaic virus (CaMV) 35S promoter provides a model plant nuclear promoter system, as its double-strand DNA genome is transcribed by host nuclear RNA polymerase II from a CaMV minichromosome2. Sequences extending to −46 were sufficient for accurate transcription initiation whereas the region between −46 and −105 increased greatly the level of transcription. The 35S promoter showed no tissue-specificity of expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koncz, C. et al. EMBO J. 2, 1597–1603 (1983).

    Article  CAS  Google Scholar 

  2. Olszewski, G., Hagen, G. & Guilfoyle, T. J. Cell 29, 395–402 (1982).

    Article  CAS  Google Scholar 

  3. Guilley, H., Dudley, R. K., Jonard, G., Balazs, E. & Richards, K. E. Cell 30, 763–773 (1982).

    Article  CAS  Google Scholar 

  4. Pavlakis, G. N. & Hamer, D. Rec. Prog. Horm. Res. 39, 353–385 (1983).

    CAS  PubMed  Google Scholar 

  5. Fraley, R. T. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4803–4807 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Marton, J., Wullems, G. S., Molendijk, L. & Schilperoort, R. A. Nature 277, 129–131 (1979).

    Article  ADS  Google Scholar 

  8. Horsch, R. B. et al. Science 223, 496–498 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Suissa, M. Analyt. Biochem. 133, 511–514 (1983).

    Article  CAS  Google Scholar 

  10. Gluzman, Y. & Shenk, T. (eds) Current Communications in Molecular Biology (Cold Spring Harbor, New York, 1983).

  11. Sakonju, S., Bogenhagen, D. F. & Brown, D. D. Cell 19, 13–26 (1980).

    Article  CAS  Google Scholar 

  12. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Guo, L.-H. & Wu, R. Meth. Enzym. 100, 60–96 (1983).

    Article  CAS  Google Scholar 

  14. Franck, A., Guilley, H., Jonard, G., Richards, K., Hirth, L. Cell 21, 285–294 (1980).

    Article  CAS  Google Scholar 

  15. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  16. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 133, 237–251 (1977).

    Article  Google Scholar 

  17. Thomashow, M. F., Nutter, R. C., Montoya, A. L., Gordon, M. P. & Nester, E. W. Cell 19, 1729–1739 (1980).

    Article  Google Scholar 

  18. Glisen, V., Crkvenjakov, R. & Byus, C. Biochemistry 13, 2633–2637 (1974).

    Article  Google Scholar 

  19. Broglie, R., Bellemare, G., Bartlett, S. G., Chua, N.-H. & Cashmore, A. R. Proc. natn. Acad. Sci. U.S.A. 78, 7304–7308 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Thomas, P. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  22. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odell, J., Nagy, F. & Chua, NH. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–812 (1985). https://doi.org/10.1038/313810a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313810a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing