Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning and sequence analysis of a cDNA for rat transforming growth factor-α

Abstract

Transforming growth factors (TGFs) are mitogenic polypeptides produced most conspicuously by transformed cells and conferring on normal cells several phenotypic alterations associated with transformation1,2. TGFs comprise two distinct sets of molecules: TGF-αs are structurally similar to epidermal growth factor (EGF), binding to and inducing the tyrosine phosphorylation of the EGF receptor in a manner indistinguishable from that of EGF3. In addition, the 50-amino acid rat TGF-α4 has 33 and 44% homologies with mouse5 and human6 EGFs, respectively, and shares with EGFs a conserved pattern of three disulphide bridges7. Thus, it has been proposed that TGF-αs belong to a family of EGF-like polypeptides7. TGF-βs, on the other hand, display no measurable binding to EGF receptors, but potentiate the growth stimulating activities of TGF-α8. Here we report the isolation of a complementary DNA clone encoding rat TGF-α. This cDNA hybridizes to a 4.5-kilobase (kb) messenger RNA that is 30 times larger than necessary to code for a 50-amino acid polypeptide and is present not only in retrovirus-transformed rat cells but also at lower levels in normal rat tissues. The nucleotide sequence of the cDNA predicts that TGF-α is synthesized as a larger product and that the larger form may exist as a transmembrane protein. However, unlike many polypeptide hormones (including EGF9,10), cleavage of the 50-amino acid TGF-α from the larger form does not occur at paired basic residues, but rather between alanine and valine residues, suggesting the role of a novel protease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Todaro, G. J., DeLarco, J. E., Fryling, C., Johnson, P. A. & Sporn, M. B. J. supramolec. Struct. 15, 287–301 (1981).

    CAS  Google Scholar 

  2. DeLarco, J. E. & Todaro, G. J. Proc. natn. Acad. Sci. U.S.A. 75, 4001–4005 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Pike, L. J. et al. J. biol. Chem. 257, 14628–14631 (1983).

    Google Scholar 

  4. Marquardt, H. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4684–4688 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Savage, C. R. Jr, Inagami, T. & Cohen, S. J. biol. Chem. 247, 7612–7621 (1972).

    CAS  PubMed  Google Scholar 

  6. Gregory, H. Nature 257, 325–327 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Marquardt, H., Hunkapiller, H. W., Hood, L. E. & Todaro, G. J. Science 223, 1079–1082 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Anzano, M. A. et al. Cancer Res. 42, 4776–4778 (1982).

    CAS  PubMed  Google Scholar 

  9. Gray, A., Dull, T. J. & Ullrich, A. Nature 303, 722–725 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Scott, J. et al. Science 221, 236–240 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Twardzik, D. R., Todaro, G. J., Reynolds, F. H. Jr & Stephenson, J. R. Virology 124, 201–207 (1983).

    Article  CAS  Google Scholar 

  12. Huynh, T., Young, R. & Davis, R. in Practical Approaches in Biochemistry (ed. Glover, D.) (IRL, Oxford, 1984).

    Google Scholar 

  13. Dente, L., Cesareni, G. & Cortese, R. Nucleic Acids Res. 11, 1645–1655 (1983).

    Article  CAS  Google Scholar 

  14. Linsley, P. S., Hargreaves, W. R., Twardzik, D. R. & Todaro, G. J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  15. Naughton, M. A. & Sanger, F. Biochem. J. 78, 156–162 (1961).

    Article  CAS  Google Scholar 

  16. Matsubara, H. Meth. Enzym. 19, 642–651 (1970).

    Article  Google Scholar 

  17. Kreil, G. A. Rev. Biochem. 50, 317–348 (1981).

    Article  CAS  Google Scholar 

  18. Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–167 (1982).

    Article  CAS  Google Scholar 

  19. Smith, A. J. H. Meth. Enzym. 65, 560–580 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Glisin, V., Crkvenjakov, R. & Byns, C. Biochemistry 13, 2633–2638 (1974).

    Article  CAS  Google Scholar 

  21. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  22. Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  23. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  24. Brown, J. P., Twardzik, D. R., Marquardt, H. & Todaro, G. J. Nature 313, 491–492 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Derynck, R., Roberts, A. B., Winkler, M. E., Chen, E. Y. & Goeddel, D. V. Cell 38, 287–297 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Rose, T., Webb, N. et al. Cloning and sequence analysis of a cDNA for rat transforming growth factor-α. Nature 313, 489–491 (1985). https://doi.org/10.1038/313489a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313489a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing