Abstract
Hereditary persistance of fetal haemoglobin (HPFH) is a benign condition characterized by the production in adulthood of more than 1% fetal haemoglobin (HbF, α2γ2) in the absence of eryth-ropoietic stress1. Several genetic types have been discerned based on the level of HbF produced, the relative contributions of the duplicated fetal (Gγ and Aγ) globin genes, and the presence or absence of deletions involving the β and δ genes in cis to the mutation2,3. Greek HPFH is a non-deletion variety in which heterozygotes produce 10–20% HbF, predominantly due to overproduction of the Aγ chain4–9. We have cloned a 40-kilobase (kb) region of the β-globin cluster from a Greek HPFH allele and report here that a point mutation (G→A) occurs 117 base pairs (bp) 5′ to the cap site of the Aγ-globin gene, just upstream of the distal CCA AT sequence. The corresponding region of the Gγ-globin gene is normal. We discuss the implications of this finding for the developmental regulation of globin gene expression.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Episomal vectors based on S/MAR and the β-globin Replicator, encoding a synthetic transcriptional activator, mediate efficient γ-globin activation in haematopoietic cells
Scientific Reports Open Access 24 December 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Weatherall, D. J. & Clegg, J. B. The Thalassaemia Syndromes 3rd edn (Blackwell, Oxford, 1981).
Wood, W. G., Clegg, J. B. & Weatherall, D. J. Br. J. Haemat. 43, 609–520 (1979).
Collins, F. S. & Weissman, S. M. Prog. Nucleic Acid Res. molec. Biol. 31, 315–458 (1984).
Fessas, P. & Stamatoyannopoulos, G. Blood 24, 223–240 (1964).
Sofroniadou, K., Wood, W. G., Nute, P. E. & Stamatoyannopoulos, G. Br. J. Haemat. 29, 137–148 (1975).
Clegg, J. B. et al. Br. J. Haemat. 43, 521–536 (1979).
Jones, R. W., Old, J. M., Wood, W. G., Clegg, J. B. & Weatherall, D. J. Br. J. Haemat. 50, 415–422 (1982).
Papayannopoulou, T., Lawn, R. M., Stamatoyannopoulos, G. & Maniatis, T. Br. J. Haemat. 50, 387–399 (1982).
Farquhar, M. et al. Am. J. hum. Genet. 35, 611–620 (1983).
Collins, F. S., Stoeckert, C. J., Serjeant, G. R., Forget, B. G. & Weissman, S. M. Proc. natn. Acad. Sci. U. S. A. 81, 4894–4898 (1984).
Antonarakis, S. E., Boehm, C. D., Giardina, P. J. V. & Kazazian, H. H. Proc. natn. Acad. Sci. U.S.A. 79, 137–141 (1982).
Orkin, S. H. et al. Nature 296, 627–631 (1982).
Humphries, R. K., Ley, T., Turner, P., Moulton, A. D. & Nienhuis, A. W. Cell 30, 173–183 (1982).
Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).
Godson, G. N. in Methods of DNA and RNA Sequencing (ed. Weissman, S. M.) 69–111 (Praeger, New York, 1983).
Slightom, J. L., Blechl, A. E. & Smithies, O. Cell 21, 627–638 (1980).
Shen, S.-H., Slightom, J. L. & Smithies, O. Cell 26, 191–203 (1981).
Gelinas, R. & Stamatoyannopoulos, G. Nature (this issue).
Hardison, R. C. J. biol. Chem. 258, 8739–8744 (1983).
Hardies, S. C., Edgell, M. H. & Hutchison, C. A. J. biol. Chem. 259, 3748–3756 (1984).
Grosveld, G. C., de Boer, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–126 (1982).
Dierks, P. et al. Cell 32, 695–706 (1983).
Grosschedl, R. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).
McKnight, S. L. & Kingsbury, R. Science 217, 316–325 (1982).
Weatherall, D.J., Pembrey, M. E. & Pritchard, J. Clin. Haemat. 3, 467–508 (1974).
Roginski, R. S. et al. Cell 35, 149–155 (1983).
Giglioni, B. et al. EMBO J. 3, 2641–2646 (1984).
Takeshita, K., Forget, B. G., Scarpa, A. & Benz, E. J. Blood 64, 13–22 (1984).
Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).
Anagnou, B. P. et al. Blood 64 (Suppl. 1): 6la (1984).
Dover, G. J. & Boyer, S. H. Blood 64 (Suppl. 1): 61a (1984).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Collins, F., Metherall, J., Yamakawa, M. et al. A point mutation in the Aγ-globin gene promoter in Greek hereditary persistence of fetal haemoglobin. Nature 313, 325–326 (1985). https://doi.org/10.1038/313325a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/313325a0
This article is cited by
-
Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin
Nature Genetics (2021)
-
Innovative Therapies for Hemoglobin Disorders
BioDrugs (2020)
-
Structural insights into the recognition of γ-globin gene promoter by BCL11A
Cell Research (2019)
-
Episomal vectors based on S/MAR and the β-globin Replicator, encoding a synthetic transcriptional activator, mediate efficient γ-globin activation in haematopoietic cells
Scientific Reports (2019)
-
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
Nature Genetics (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.