Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Haemoglobin switching in human embryos: asynchrony of ζα and εγ-globin switches in primitive and definitive erythropoietic lineage

Abstract

Haemoglobin switching in humans provides a unique model for investigating the mechanisms underlying expression of a develop-mentally regulated gene family. Numerous studies have focused on the switch from fetal to adult (that is, γβ) globin1,2, but little is known about the embryonic → fetal (that is, ζα and εγ) switches, as well as the transition from ‘primitive’ yolk sac to ‘definitive’ liver erythropoiesis3–7. Here we have studied the embryonic→fetal haemoglobin switches in yolk sac, liver and circulating blood erythroblasts from 25 embryos and 6 fetuses. Globin synthesis was also evaluated in purified ‘primitive’ and ‘definitive’ erythroblasts. Primitive erythroblasts synthesize essentially ζ and ε chains at 5 weeks and α- and ε-globin with a minor aliquot of ζ and γ chains at 6–7 weeks, whereas definitive erythroblasts produce α and γ + β-globin at 6 weeks but only α and γ + β chains from 8 weeks onward. In both lineages the ζα and the εγ switches are asynchronous, the former preceding the latter. Furthermore, ζ- and β-globin synthesis is restricted to primitive and definitive erythroblasts respectively. These findings are discussed in terms of a monoclonal model for haemoglobin switching in early human ontogeny.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stamatoyannopoulos, G. & Nienhuis, A. W. (eds) Globin Gene Expression and Hematopoietic Differentiation (Liss, New York, 1983).

  2. Peschle, C. et al. in Current Concepts in Erythropoiesis (ed. Dunn, C.) 339–390 (Wiley, London, 1983).

    Google Scholar 

  3. Wood, W. G. Br. med. Bull. 32, 282–287 (1976).

    Article  CAS  Google Scholar 

  4. Wood, W. G., Clegg, J. B. & Weatherall, D. J. in Progress in Hematology Vol. 10 (ed. Brown, E. D.) 43–90 (Grune & Stratton, New York, 1977).

    Google Scholar 

  5. Gale, R. E., Clegg, J. B. & Huehns, E. R. Nature 280, 162–164 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Fantoni, A., Farace, M. G. & Gambari, R. Blood 57, 623–633 (1981).

    CAS  PubMed  Google Scholar 

  7. Kelemen, E., Calvo, W. & Fliedner, T. M. Atlas of Human Hemopoietic Development (Springer, New York, 1979).

    Book  Google Scholar 

  8. Bloom, W. & Bartelmex, G. W. Am. J. Anat. 67, 21–56 (1927).

    Article  Google Scholar 

  9. Marks, P. A. & Kovach, J. S. Curr. Topics dev. Biol. 1, 213–252 (1967).

    Article  Google Scholar 

  10. Hecht, F., Motulsky, A. G., Lemire, R. J. & Shepard, T. Science 152, 91–92 (1966).

    Article  ADS  CAS  Google Scholar 

  11. Wood, W. G. & Weatherall, D. J. Nature 244, 162–165 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Kazazian, H. H. Jr & Woodhead, A. P. New Engl. J. Med. 289, 58–62 (1973).

    Article  CAS  Google Scholar 

  13. Moore, K. L. The Developing Human 3rd edn (Saunders, Philadelphia, 1982).

    Google Scholar 

  14. England, M. A. Color Atlas of Life Before Birth (Year Book Medical Publishers, Inc., Chicago, 1983).

    Google Scholar 

  15. Shepard, T. H., Nelson, T., Dakley, G. P. & Lemire, R. J. in Monitoring Birth Defects and Environment. The Problem of Surveillance (eds Hook, E. B., Janerich, D. T. & Porter, I. H.) 29–43 (Academic, New York, 1971).

    Google Scholar 

  16. Alter, B. P. & Goff, S. C. Biochim. Biophys. Res. Commun. 94, 843–848 (1981).

    Article  Google Scholar 

  17. Comi, P. et al. Proc. natn. Acad. Sci. U.S.A. 77, 362–367 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Salvo, G., Caprari, P., Samoggia, P., Mariani, G. & Salvati, A. M. Clinica Chim. Acta 122, 293–300 (1982).

    Article  CAS  Google Scholar 

  19. Peschle, C. et al. Blood 58, 565–572 (1981).

    CAS  PubMed  Google Scholar 

  20. Alter, B. P. et al. New Engl. J. Med. 295, 1437–1443 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschle, C., Mavilio, F., Carè, A. et al. Haemoglobin switching in human embryos: asynchrony of ζα and εγ-globin switches in primitive and definitive erythropoietic lineage. Nature 313, 235–238 (1985). https://doi.org/10.1038/313235a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313235a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing