Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of glutamate receptor binding by the cytoskeletal protein fodrin

Abstract

The erythrocyte cytoskeleton, which consists primarily of a mesh-work of spectrin and actin, controls cell shape and the disposition of proteins within the membrane1–3. Proteins similar to spectrin have recently been found in diverse cells and tissues3–7, and it is possible that they mediate the capping of cell-surface receptors8,9, although this has not been demonstrated directly. In neurones, the spectrin-like protein fodrin lines the cortical cytoplasm and may link actin filaments to the membrane3–7. Fodrin has been hypothesized to regulate the number of receptor binding sites on neuronal membranes for the putative neurotransmitter L-glutamate10,11. Micromolar calcium concentrations activate the thiol protease calpain I (ref. 12), induce fodrin degradation10,11 and more than double the density of glutamate binding sites10,13; these effects are all blocked by thiol protease inhibitors. We have now used specific antibodies to examine further the role of fodrin proteolysis in regulating glutamate receptors. We report that fodrin antibodies block the fodrin degradation and increase in glutamate binding normally induced by calcium, and so provide direct evidence for control of membrane receptors by a non-erythroid spectrin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Branton, D., Cohen, C. M. & Tyler, J. Cell 24, 24–32 (1981).

    Article  CAS  Google Scholar 

  2. Gratzer, W. B. Biochem. J. 198, 1–8 (1981).

    Article  CAS  Google Scholar 

  3. Goodman, S. R. & Shiffer, K. Am. J. Physiol. 244, C121–141 (1983).

    Article  Google Scholar 

  4. Levine, J. & Willard, M. J. Cell. Biol. 90, 631–643 (1981).

    Article  CAS  Google Scholar 

  5. Bennett, V. J. cell Biochem. 18, 49–66 (1982).

    Article  CAS  Google Scholar 

  6. Lazarides, E. & Nelson, W. J. Cell 31, 505–508 (1982).

    Article  CAS  Google Scholar 

  7. Glenney, J. R. Jr, Glenney, P. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 79, 4002–4005 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Levine, J. & Willard, M. Proc. natn. Acad. Sci. U.S.A. 80, 191–195 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Nelson, W. J., Colaco, C. A. L. S. & Lazarides, E. Proc. natn. Acad. Sci. U.S.A. 80, 1626–1630.

  10. Baudry, M., Bundman, M., Smith, E. K. & Lynch, G. Science 212, 937–938 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Siman, R., Baudry, M. & Lynch, G. Proc. natn. Acad. Sci. U.S.A. 81, 3572–3576 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Siman, R., Baudry, M. & Lynch, G. J. Neurochem. 41, 950–956 (1983).

    Article  CAS  Google Scholar 

  13. Baudry, M. & Lynch, G. Nature 282, 748–750 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Baudry, M., Kramer, K. & Lynch, G. Brain Res. 270, 142–145 (1983).

    Article  CAS  Google Scholar 

  15. Shariff, N. A. & Roberts, P. J. Brain Res. 194, 594–597 (1980).

    Article  Google Scholar 

  16. Baudry, M., Kramer, K. & Lynch, G. Molec. Pharmac. 24, 229–234 (1983).

    CAS  Google Scholar 

  17. Baudry, M. & Lynch, G. Molec. cell. Biochem. 38, 5–18 (1981).

    Article  CAS  Google Scholar 

  18. Lynch, G., Halpain, S. & Baudry, M. Brain Res. 244, 101–111 (1982).

    Article  CAS  Google Scholar 

  19. Mamounas, L., Thompson, R. F., Lynch, G. & Baudry, M. Proc. natn. Acad. Sci. U.S.A. (in the press).

  20. Morrissey, J. H. Analyt. Biochem. 117, 307–310 (1981).

    Article  CAS  Google Scholar 

  21. Burridge, K. Meth. Enzym. 50, 54–64 (1978).

    Article  CAS  Google Scholar 

  22. Porter, R. R. Biochem. J. 119–127 (1959).

    Article  CAS  Google Scholar 

  23. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siman, R., Baudry, M. & Lynch, G. Regulation of glutamate receptor binding by the cytoskeletal protein fodrin. Nature 313, 225–228 (1985). https://doi.org/10.1038/313225a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313225a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing