Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA bending induced by cruciform formation

Abstract

Cruciform structures1,2 in DNA are of considerable interest, both as extreme examples of sequence-dependent structural heterogeneity and as models for four-way junctions such as the Holliday junction3 of homologous genetic recombination. Cruciforms are of lower thermodynamic stability than regular duplex DNA, and have been observed only in negatively supercoiled molecules4–6, where the unfavourable free energy of formation is offset by the topological relaxation of the torsionally stressed molecule. From an experimental viewpoint this can be a disadvantage, as cruciform structures can be studied only in relatively large supercoiled DNA circles, and are destabilized when a break is introduced at any point. We therefore set out to construct a pseudo-cruciform junction—by generating hereroduplex formation between two inverted repeat sequences. Stereochemically, this should closely resemble a true cruciform but remain stable in a linear DNA fragment. We have now created such a junction and find that it has the expected sensitivities to endonucleases. These DNA fragments exhibit extremely anomalous gel electrophoretic mobility, the extent of which depends on the relative position of the pseudo-cruciform along the length of the molecule. Our results are very similar to those obtained by Wu and Crothers7 using kinetoplast DNA, and we conclude that the pseudo-cruciform junction introduces a bend in the linear DNA molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Platt, J. R. Proc. natn. Acad. Sci. U.S.A. 41, 181–183 (1955).

    Article  ADS  CAS  Google Scholar 

  2. Gierer, A. Nature 212, 1480–1481 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Holliday, R. Genet. Res. 5, 282–304 (1964).

    Article  Google Scholar 

  4. Gellert, M., Mizuuchi, K., O'Dea, M. H., Ohmori, H. & Tomizawa, J. Cold Spring Harb. Symp. quant. Biol. 43, 35–40 (1979).

    Article  CAS  Google Scholar 

  5. Lilley, D. M. J. Proc. natn. Acad. Sci. U.S.A. 77, 6468–6472 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Panayotatos, N. & Wells, R. D. Nature 289, 466–470 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Mizuuchi, K., Kemper, B., Hays, J. & Weisberg, R. A. Cell 29, 357–365 (1982).

    Article  CAS  Google Scholar 

  9. Lilley, D. M. J. & Kemper, B. Cell 36, 413–422 (1984).

    Article  CAS  Google Scholar 

  10. Lafer, E. M., Moller, A., Nordheim, A., Stollar, B. D. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 78, 3546–3550 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Potter, H. & Dressler, D. Proc. natn. Acad. Sci. U.S.A. 75, 3698–3702 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Bell, L. & Byers, B. Proc. natn. Acad. Sci. U.S.A. 76, 3445–3449 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Kallenbach, N. R., Ma, R-I. & Seeman, N. C. Nature 305, 829–831 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Lilley, D. M. J. & Markham, A. F. EMBO J. 2, 527–533 (1983).

    Article  CAS  Google Scholar 

  15. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  16. Frederick, C. A. et al. Nature 309, 327–331 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Crick, F. H. C. & Klug, A. Nature 255, 530–533 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Sobell, H. M., Tsai, C., Gilbert, S. G., Jain, S. C. & Sakore, T. D. Proc. natn. Acad. Sci. U.S.A. 73, 3068–3072 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Levitt, M. Proc. natn. Acad. Sci. U.S.A. 75, 640–644 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Sussman, J. L. & Trifonov, E. N. Proc. natn. Acad. Sci. U.S.A. 75, 103–107 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Twigg, A. J. & Sherratt, D. Nature 283, 216–218 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gough, G., Lilley, D. DNA bending induced by cruciform formation. Nature 313, 154–156 (1985). https://doi.org/10.1038/313154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing