Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function

Abstract

Phenylalanine 87 of yeast iso-1-cytochromc c (Phe 82 in horse heart and bonito) is phylogenetically conserved1 and occurs near the surface of the protein2. It has been suggested that this residue is directly involved in electron transfer between cytochrome c and cytochrome c peroxidase (CCP)3 and may also control the polarity of the haem environment4. Because Phe residues are not susceptible to chemical modification, no direct means of studying the functional role of Phe 87 has been available, so we have chosen Phe 87 as our initial target here to test the feasibility of using site-directed mutagenesis5 as a means of studying structure–function relationships in cytochrome c. We have changed the codon for Phe 87 to that of either a Ser, a Tyr or a Gly. The mutated genes have been introduced6 into a yeast strain7 lacking both isozymes of cytochrome c. Unlike the recipient strain, transformants grow on a non-fermentable carbon source, indicating that the mutant proteins can reduce cytochrome oxidase7. The purified mutant proteins are similar to wild type with respect to their visible spectra8, 20–70% as active as wild-type protein in the CCP assay9, and their reduction potentials are lowered by as much as 50 mV. Thus Phe 87 is not essential for cytochrome c to transfer electrons but is involved in determining the reduction potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dickerson, R. E. & Timkovich, R. Enzymes 11, 397–547 (1975).

    Article  CAS  Google Scholar 

  2. Takano, T. & Dickerson, R. E. J. molec. Biol. 153, 79–94 (1981).

    Article  CAS  Google Scholar 

  3. Poulos, T. L. & Kraut, J. J. biol. Chem. 255, 10322–10330 (1980).

    CAS  PubMed  Google Scholar 

  4. Kassner, R. J. Proc. natn. Acad. Sci. U.S.A. 69, 2263–2267 (1972).

    Article  ADS  CAS  Google Scholar 

  5. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  6. Hicks, J. B., Strathern, J. N., Klar, A. J. S. & Dellaporta, S. L. in Genetic Engineering: Principles and Methods Vol. 4 (eds Setlow, J. K. & Hollaender, A.) 219–248 (Plenum, New York, 1982).

    Google Scholar 

  7. Faye, G., Leung, D. W., Tatchell, K., Hall, B. D. & Smith, M. Proc. natn. Acad. Sci. U.S.A. 78, 2258–2262 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Margoliash, E. & Frohwirt, N. Biochem. J. 71, 570–572 (1959).

    Article  CAS  Google Scholar 

  9. Kang, C. H., Ferguson-Miller, S. & Margoliash, E. J. biol. Chem. 252, 919–926 (1977).

    CAS  PubMed  Google Scholar 

  10. Montgomery, D. L., Hall, B. D., Gillam, S. & Smith, M. Cell 14, 673–680 (1978).

    Article  CAS  Google Scholar 

  11. Smith, M. et al. Cell 16, 753–761 (1979).

    Article  CAS  Google Scholar 

  12. Lederer, F., Simon, A. M. & Verdiere, J. Biochem. biophys. Res. Commun. 47, 55–58 (1972).

    Article  CAS  Google Scholar 

  13. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  Google Scholar 

  14. Norris, K., Norris, F., Christiansen, L. & Fill, N. Nucleic Acids Res. 11, 5103–5112 (1983).

    Article  CAS  Google Scholar 

  15. Astell, C. R., Doel, M. T., Jahnke, P. A. & Smith, M. Biochemistry 12, 5068–5074 (1973).

    Article  CAS  Google Scholar 

  16. Gillam, S., Waterman, K. & Smith, M. Nucleic Acids Res. 2, 625–634 (1975).

    Article  CAS  Google Scholar 

  17. Woo, S. L. C. Meth. Enzym. 68, 389–395 (1979).

    Article  CAS  Google Scholar 

  18. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  20. Hanahan, D. J. molec. Biol. 166, 557–580 (1983).

    Article  CAS  Google Scholar 

  21. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. J. Bact. 153, 163–168 (1983).

    CAS  PubMed  Google Scholar 

  22. Sherman, F. et al. J. biol. Chem. 243, 5446–5456 (1968).

    CAS  PubMed  Google Scholar 

  23. Nelson, C. E., Sitzman, E. V., Kang, C. H. & Margoliash, E. Analyt. Biochem. 83, 622–631 (1977).

    Article  CAS  Google Scholar 

  24. Reid, L. S., Taniguchi, V. T., Gray, H .B. & Mauk, A. G. J. Am. chem. Soc. 104, 7516–7519 (1982).

    Article  CAS  Google Scholar 

  25. Delange, R. J., Glazer, A. N. & Smith, E. L. J. biol. Chem. 245, 3325–3327 (1970).

    CAS  PubMed  Google Scholar 

  26. Adams, S. P., Kavka, K. S., Wykes, E. J., Holder, S. B. & Galluppi, G. R. J. Am. chem. Soc. 105, 661–663 (1983).

    Article  CAS  Google Scholar 

  27. Atkinson, T. & Smith, M. in Oligonucleotide Synthesis: A Practical Approach (ed. Gait, M.) (IRL, Washington DC, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pielak, G., Mauk, A. & Smith, M. Site-directed mutagenesis of cytochrome c shows that an invariant Phe is not essential for function. Nature 313, 152–154 (1985). https://doi.org/10.1038/313152a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313152a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing