Gene structure of human cardiac hormone precursor, pronatriodilatin

Abstract

Atrial cardiocytes contain granules typical of protein-secreting cells1, and atrial extracts are known to contain a powerful natriuretic and diuretic activity2 and to possess smooth muscle relaxant activity3. A variety of active atrial peptides have been isolated, including a family of related peptides showing natriuretic, diuretic and smooth muscle relaxant activities in rat4–9 and human atria10; these peptides were named atrial natriuretic factor (ANF). Another unrelated peptide from pig atria11, cardiodilatin, is thought to possess only smooth muscle relaxant activity. Its partial amino acid sequence shows no homology with ANF sequences. The sequence analysis of a large form (106 amino acids) of ANF12 and of ANF complementary DNA clones13–16 indicates that cardiodilatin and ANF peptides are synthesized from a common precursor. This precursor also contains a signal peptide sequence expected of a secretory protein17. We now describe the complete structure and sequence of the human gene for this novel hormone precursor that we call pronatriodilatin12.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Jamieson, J. D. & Palade, G. E. J. Cell Biol. 23, 151–172 (1964).

  2. 2

    deBold, A. J., Borenstein, H. B., Veress, A. T. & Sonnenberg, H. Life Sci. 28, 89–94 (1981).

  3. 3

    Currie, M. G. et al. Science 221, 71–73 (1983).

  4. 4

    Seidah, N. G. et al. Proc. natn. Acad. Sci. U.S.A. 81, 2640–2644 (1984).

  5. 5

    Flynn, T. G., deBold, M. L. & deBold, A. J. Biochem. biophys. Res. Commun. 117, 859–865 (1983).

  6. 6

    Currie, M. G. et al. Science 223, 67–69 (1984).

  7. 7

    Misono, K. S., Fukumi, H., Grammer, R. T. & Inagami, T. Biochem. biophys. Res. Commun. 119, 524–529 (1984).

  8. 8

    Kangawa, K., Fukuda, A., Minamino, N. & Matsuo, H. Biochem. biophys. Res. Commun. 119, 933–940 (1984).

  9. 9

    Atlas, S. A. et al. Nature 309, 717–719 (1984).

  10. 10

    Kangawa, K. & Matsuo, H. Biochem. biophys. Res. Commun. 118, 131–139 (1984).

  11. 11

    Forssmann, D. et al. Anat. Embryol. 168, 307–313 (1983).

  12. 12

    Lazure, C. et al. FEBS Lett. 172, 80–86 (1984).

  13. 13

    Zivin, R. A. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6325–6329 (1984).

  14. 14

    Yamanaka, M. et al. Nature 309, 719–722 (1984).

  15. 15

    Maki, M. et al. Nature 309, 722–724 (1984).

  16. 16

    Oikawa, S. et al. Nature 309, 724–726 (1984).

  17. 17

    Blobel, G. et al. Symp. Soc. exp. Biol. 33, 9–36 (1979).

  18. 18

    Lawn, R. M., Fritsch, E. F., Parker, R. C., Blake, C. & Maniatis, T. Cell 15, 1157–1174 (1981).

  19. 19

    Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T. & Schmid, C. W. J. molec. Biol. 15, 17–33 (1981).

  20. 20

    Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

  21. 21

    Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5469 (1977).

  22. 22

    Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

  23. 23

    Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

  24. 24

    Corden, J. et al. Science 209, 1406–1414 (1980).

  25. 25

    Drouin, J. J. molec. Biol. 140, 15–34 (1980).

  26. 26

    Benton, W. D. & Davis, R. W. Science 196, 180 (1977).

  27. 27

    Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

  28. 28

    Denhardt, D. T. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

  29. 29

    Staden, R. Nucleic Acids Res. 10, 4731–4751 (1982).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.