Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ediacara-type fossils in Cambrian sediments


Fossil assemblages that preserve soft-bodied organisms are essential for our understanding of the composition and diversity of past life. The worldwide terminal Proterozoic Ediacara-type fossils (from 600–544 Myr BP) are unique in consisting of soft-bodied animals, which are typically preserved as impressions in coarse-grained sediments1,2,3,4. These Lagerstätten are also special because they pre-date the major burst of skeletonization, which occurred near the start of the Cambrian period3. Most Ediacara-type fossils are interpreted to be cnidarians, but higher metazoans such as annelids and molluscs may also be represented1,2,3,4. However, the unique style of preservation and difficulties in finding convincing morphological homologies with definite animals have led some specialists to prefer non-metazoan interpretations, such as Vendobionta5. In addition, the rarity of Ediacara-type fossils in younger sediments has led to suggestions of a terminal Proterozoic mass extinction6. Here we report typical Ediarcara-type frond-shaped fossils that occur together with an assemblage of Cambrian-type trace fossils in unequivocally Cambrian-aged sediments of the Uratanna Formation, South Australia. This occurrence bridges the apparent divide between the terminal Proterozoic and Cambrian fossil assemblages, and also suggests that closure of a taphonomic window (an interval of time with unique preservational conditions) was as important as extinction in the disappearance of Ediacara-type organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location (marked by an asterisk, top right) and stratigraphic context of Ediacara-type fronds from the Uratanna Formation, in the Angepena syncline, northern Flinders Ranges.
Figure 2: Fronds and associated fossils from the Uratanna Formation, Angepena syncline.


  1. Gehling, J. G. The case for Ediacaran fossil roots to the metazoan tree. Mem. Geol. Soc. India 20, 181–224 (1991).

    Google Scholar 

  2. Runnegar, B. N. Vendobionta or metazoa? Developments in understanding the Ediacara “fauna”. Neues Jb. Geol. Palaentol Abh. 195, 303–318 (1995).

    Article  Google Scholar 

  3. Conway Morris, S. The fossil record and the early evolution of the Metazoa. Nature 361, 219–225 (1993).

    Article  ADS  Google Scholar 

  4. Fedonkin, M. A. & Waggoner, B. M. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388, 868–871 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Seilacher, A. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J. Geol. Soc. Lond. 149, 607–613 (1992).

    Article  Google Scholar 

  6. Brasier, M. D. in Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H.) 113–138 (Springer, Berlin, (1995).

    Google Scholar 

  7. Crimes, T. P., Insole, A. & Williams, B. J. P. Arigid-bodied Ediacaran Biota from Upper Cambrian Strata in Co. Wexford, Eire. Geol. J. 30, 89–109 (1995).

    Article  Google Scholar 

  8. Conway Morris, S. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36, 593–635 (1993).

    Google Scholar 

  9. Daily, B. Discovery and significance of basal Cambrian Uratanna Formation, Mt Scott Range, Flinders Ranges, South Australia. Search 4, 202–205 (1973).

    Google Scholar 

  10. Mount, J. F. & McDonald, C. Influence of change in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic-early Cambrian metazoan radiation, Australia. Geology 20, 1031–1034 (1992).

    Article  ADS  Google Scholar 

  11. Jenkins, R. J. F., Ford, C. H. & Gehling, J. G. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (Late Precambrian, Flinders Ranges). Geol. Soc. Aust. J. 30, 101–119 (1983).

    Article  Google Scholar 

  12. Jensen, S. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils Strata 42, 1–110 (1997).

    Google Scholar 

  13. Narbonne, G. M., Saylor, B. Z. & Grotzinger, J. P. The youngest Ediacaran fossils from southern Africa. J. Paleontol. 71, 953–967 (1997).

    Article  CAS  Google Scholar 

  14. Crimes, T. P. Trace fossils and correlation of the late Precambrian and early Cambrian strata. Geol. Mag. 124, 97–119 (1987).

    Article  ADS  Google Scholar 

  15. Narbonne, G. M. & Myrow, P. Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary. New York State Mus. Bull. 463, 72–76 (1988).

    Google Scholar 

  16. Jensen, S. & Grant, S. W. F. Trace fossils from the Dividal Group, northern Sweden: implications for Early Cambrian biostratigraphy of Baltica. Norsk Geol. Tids.(in the press).

  17. Gureev, Yu. A. in Problematiki Pozdnego Dokembriya i Paleozoya (eds Sokolov, B. S. & Zhuravleva, I. T.) 92–103 (Nauka, Moscow, (1985).

    Google Scholar 

  18. Narbonne, G. M., Myrow, P., Landing, E. & Anderson, M. A. Achondrophorine (medusoid hydrozoan) from the basal Cambrian (Placentian) of Newfoundland. J. Paleontol. 65, 186–191 (1991).

    Article  Google Scholar 

  19. Runnegar, B., Gehling, J. G., Horodyski, R. J., Jensen, S. & Knauth, L. P. Base of the Sauk Sequence is a global eustatic event that lies just above the Precambrian-Cambrian boundary. Geol. Soc. Am. Abstr. 27, 330 (1995).

    Google Scholar 

  20. Daily, B. Novye danneye ob osnovanii Kembriya v juzhnoj Avstralii. Izvestiya Akad. Nauk SSSR, Ser. Geol. 3, 45–52 (1976).

    MathSciNet  Google Scholar 

  21. Gravestock, D. I. & Shergold, J. H. in Ecology of the Cambrian Radiation (eds Zhuravlev, A. Yu. & Riding, R.) (Columbia Univ. Press, New York, in the press).

  22. Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598–604 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Bowring, S. al. Calibrating rates of Early Cambrian evolution. Science 261, 1293–1298 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia. Geol. Mag. 133, 445–485 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Gehling, J. G. & Rigby, J. K. Long expected sponges from the Neoproterozoic Ediacara Fauna of South Australia. J. Paleontol. 70, 185–195 (1996).

    Article  Google Scholar 

  26. Brasier, M., Green, O. & Shields, G. Ediacaran sponge spicule cluster from southwestern Mongolia and the origins of the Cambrian fauna. Geology 25, 303–306 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Gehling, J. G. Acnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa 12, 299–314 (1988).

    Article  Google Scholar 

  28. Gehling, J. G. in 12th Int. Sed. Congr. Canberra, Abst. 117 (1986).

    Google Scholar 

  29. Seilacher, A. & Pflüger, F. in Biostabilization of Sediments (eds Krumbein, W. E., Paterson, D. M. & Stal, L. J.) 97–105 (Bibliotheks und Informationssystem Univ. Oldenburg, Oldenburg, Germany, (1994).

    Google Scholar 

  30. Droser, M. L. & Li, X. in Ecology of the Cambrian Radiation (eds Zhuravlev, A. Yu. & Riding, R.) (Columbia Univ. Press, New York, in the press).

Download references


We thank the National Geographic Society for financial support covering logistics and fieldwork for this project; S. Conway Morris for comments on the manuscript; and M. Walter for reviews. J.G.G. acknowledges financial support from a University of South Australia small ARC grant. S.J. is supported by a grant from NERC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sören Jensen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jensen, S., Gehling, J. & Droser, M. Ediacara-type fossils in Cambrian sediments. Nature 393, 567–569 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing