Anisotropic structures at the base of the Earth's mantle


The D″ shell at the base of the Earth's mantle is thought to be a thermal and compositional boundary layer where vigorous dynamical processes are taking place1,2,3,4. An important property of D″ is its seismic anisotropy, expressed as different velocities for horizontally and vertically polarized shear waves that have been diffracted or reflected at the core–mantle boundary5,6. The nature of this anisotropy has been the subject of debate7,8,9,10,11. Here we present an analysis of various seismic phases, generated in the Kermadec–Fiji–Tonga zone and recorded at stations in North America, which reveal a region at the base of the mantle beneath the southwest Pacific Ocean where horizontally propagating vertically polarized waves are slower (by at least 10 per cent) than horizontally polarized waves. This observed anisotropy is an order of magnitude larger than that previously thought to exist in the lower mantle, and corresponds to lateral variations in horizontally polarized shear-wave velocity which are also of about 10 per cent. We speculate that this anisotropy may be the result of the mixing and shearing of strongly heterogeneous material in the boundary layer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geometry of the data set considered.
Figure 2: Residuals of SHdiff−SKS and SHdiff − SKKS differential travel times with respect to those for PREM12, for HRV/WFM, RSON and CCM, and corresponding regression lines.
Figure 3: SKKS−SKS residuals for all paths in EPS Fig. 1b.
Figure 4: Delays of SVdiff with respect to SHdiff as a function of epicentral distance for stations HRV/WFM, RSON and CCM.


  1. 1

    Doornbos, D. J., Spiliopoulos, S. & Stacey, F. D. Seismological properties of D″ and the structure of a thermal boundary layer. Phys. Earth Planet. Inter. 41, 225–239 (1986).

    ADS  Article  Google Scholar 

  2. 2

    Knittle, E. & Jeanloz, R. Earth's core-mantle boundary: results of experiment at high pressures and temperatures. Science 251, 1438–1443 (1991).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kellogg, L. H. & King, S. D. Effect of mantle plumes on the growth of D″ by reaction between the core and mantle. Geophys. Res. Lett. 20, 379–382 (1993).

    ADS  Article  Google Scholar 

  4. 4

    Loper, D. E. & Lay, T. The core-mantle boundary region. J. Geophys. Res. 100, 6397–6420 (1995).

    ADS  Article  Google Scholar 

  5. 5

    Vinnik, L., Farra, V. & Romanowicz, B. Observational evidence for diffracted SV in the shadow of the Earth's core. Geophys. Res. Lett. 16, 519–522 (1989).

    ADS  Article  Google Scholar 

  6. 6

    Lay, T. & Young, C. J. Analysis of seismic SV waves in the core's penumbra. Geophys. Res. Lett. 18, 1373–1376 (1991).

    ADS  Article  Google Scholar 

  7. 7

    Maupin, V. On the possibility of anisotropy in the D″ layer as inferred from the polarization of diffracted S-waves. Phys. Earth Planet. Inter. 87, 1–32 (1994).

    ADS  Article  Google Scholar 

  8. 8

    Vinnik, L., Romanowicz, B., Le Stunff, Y. & Makeyeva, L. Seismic anisotropy in the D″ layer. Geophys. Res. Lett. 22, 1657–1660 (1995).

    ADS  Article  Google Scholar 

  9. 9

    Kendall, J. M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Matzel, E., Sen, S. E. & Grand, S. P. Evidence for anisotropy in the deep mantle beneath Alaska. Geophys. Res. Lett. 23, 2416–2420 (1996).

    ADS  Article  Google Scholar 

  11. 11

    Garnero, E. & Lay, T. Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska. J. Geophys. Res. 102, 8121–8135 (1996).

    ADS  Article  Google Scholar 

  12. 12

    Dziewonski, A. M. & Anderson, D. L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS  Article  Google Scholar 

  13. 13

    Schweitzer, J. & Mueller, G. Anomalous difference traveltimes and amplitude ratios of SKS and SKKS from Fiji-Tonga events. Geophys. Res. Lett. 13, 1529–1532 (1986).

    ADS  Article  Google Scholar 

  14. 14

    Garnero, E. & Helmberger, D. V. Travel times of S and SKS: implication for three-dimensional lower mantle structure beneath the central Pacific. J. Geophys. Res. 98, 8225–8241 (1993).

    ADS  Article  Google Scholar 

  15. 15

    Li, X. D. & Romanowicz, B. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101, 22245–22272 (1996).

    ADS  Article  Google Scholar 

  16. 16

    Grand, S., van der Hilst, R. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  17. 17

    Breger, L., Romanowicz, B. & Vinnik, L. Test of tomographic model of D″ using differential travel time data. Geophys. Res. Lett. 25, 5–8 (1998).

    ADS  Article  Google Scholar 

  18. 18

    Garnero, E. & Helmberger, D. V. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific. Geophys. Res. Lett. 23, 977–980 (1996).

    ADS  Article  Google Scholar 

  19. 19

    Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962).

    ADS  Article  Google Scholar 

  20. 20

    Nevsky, M. V. Quasianisotropy of Velocities of Seismic Waves (Nauka, Moscow, (1974). (in Russian).

    Google Scholar 

  21. 21

    Levin, F. K. Seismic velocities in transversely isotropic media. Geophysics 44, 918–936 (1979).

    ADS  Article  Google Scholar 

  22. 22

    Vinnik, L., Breger, L. & Romanowicz, B. On the inversion of Sd particle motion for anisotropy in D″. Geophys. Res. Lett. 25, 679–682 (1998).

    ADS  Article  Google Scholar 

  23. 23

    Kind, R. & Mueller, G. Computations of SV waves in realistic Earth models. J. Geophys. 41, 142–162 (1975).

    Google Scholar 

  24. 24

    Garnero, E. & Helmberger, D. V. Avery slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific; evidence from core phases. Phys. Earth Planet. Inter. 91, 161–176 (1995).

    ADS  Article  Google Scholar 

  25. 25

    Williams, Q. & Garnero, E. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Mori, J. & Helmberger, D. V. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor. J. Geophys. Res. 100, 20359–20365 (1995).

    ADS  Article  Google Scholar 

  27. 27

    Karato, S. I. Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection. Pure Appl. Geophys. 151, 565–587 (1998).

    ADS  Article  Google Scholar 

  28. 28

    Wysession, M. E., Okal, E. A. & Bina, C. R. The structure of the core-mantle boundary from diffracted waves. J. Geophys. Res. 97, 8749–8764 (1992).

    ADS  Article  Google Scholar 

  29. 29

    Jeanloz, R. in Relating Geophysical Structures and Processes, The Jeffreys Volume 121–127 (Geophys. Mongr. 76, Am. Geophys. Union, Washington DC, (1993).

    Google Scholar 

  30. 30

    Vinnik, L., Chevrot, S. & Montagner, J. P. Evidence for a stagnant plume in the transition zone? Geophys. Res. Lett. 24, 1007–1011 (1997).

    ADS  Article  Google Scholar 

Download references


We thank M. Wysession for reviews. This work was partially supported by NSF.

Author information



Corresponding author

Correspondence to Barbara Romanowicz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vinnik, L., Breger, L. & Romanowicz, B. Anisotropic structures at the base of the Earth's mantle. Nature 393, 564–567 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.