Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid

Abstract

Most materials attain a glassy state at low temperatures under suitable methods of preparation. This state exhibits the mechanical properties of a solid, but shows microscopic structural disorder1,2. A comprehensive understanding of the glassy state is, however, still lacking3. A widespread assumption is that the non-exponential relaxation processes observed in the dynamics of glasses — and also in protein dynamics, protein folding and population dynamics — are (in common with other manifestations of complex dynamics) strongly influenced by the underlying energy landscape associated with the structural configurations that the system may adopt. But concrete evidence for this in studies of glass formation has been scarce. Here we present such evidence, obtained from computer simulations of a model glass-forming liquid. We demonstrate that the onset of non-exponential relaxation corresponds to a well defined temperature below which the depth of the potential-energy minima explored by the liquid increases with decreasing temperature, and above which it does not. At lower temperatures, we observe a sharp transition when the liquid gets trapped in the deepest accessible energy basin. This transition temperature depends on the cooling rate, in a manner analogous to the experimental glass transition. We also present evidence that the barrier heights separating potential-energy minima sampled by the liquid increase abruptly at a temperature above the glass transition but well below the onset of non-exponential relaxation. This identification of a relationship between static, topographic features of the energy landscape and complex dynamics holds the promise of a clearer, possibly thermodynamic, understanding of the glass transition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Molecular dynamics simulations of a binary Lennard–Jones mixture21.
Figure 2: Transition from high-temperature behaviour to the ‘landscape-influenced’ regime where non-exponential relaxation sets in.
Figure 3: The van Hove self-correlation function for T = 0.425, shown for different values of t.
Figure 4: Onset of the ‘landscape-dominated’ regime at T ≈ 0.45.

References

  1. 1

    Debenedetti, P. G. Metastable Liquids (Princeton Univ. Press, Princeton, (1996).

    Google Scholar 

  2. 2

    Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Anderson, P. W. Through the glass lightly. Science 267, 1615 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    CAS  Article  Google Scholar 

  6. 6

    Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Stillinger, F. H. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys. 88, 7818–7825 (1988).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8

    Heuberger, G. & Silescu, H. Size dependence of tracer diffusion in supercooled liquids. J. Phys. Chem. 100, 15255–15260 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Chang, I., Fujara, F., Geil, B., Heuberger, G. & Silescu, H. Translational and rotational molecular motion in supercooled liquids studied by NMR and forced Rayleigh scattering. J. Non-Cryst. Solids 172–174;, 248–255 (1994).

    ADS  Article  Google Scholar 

  10. 10

    Cicerone, M. T., Blackburn, F. R. & Ediger, M. D. How do molecules move near T g? Molecular rotation of six probes in o-terphenyl across 14 decades in time. J. Chem. Phys. 102, 471–479 (1995).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Parisi, G. New ideas in glass transitions.in Proc. Int. Workshop on The Morphology and Kinetics of Phase Separating Complex Fluids(eds Chen, S. H., Mallamace, F. & Tartaglia, P.) Il Nuovo Cimento D (in the press).

  12. 12

    Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Goldstein, M. Viscous liquids and the glass transition. VII. Molecular mechanisms for a thermodynamic second order transition. J. Chem. Phys. 67, 2246–2253 (1977).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Stillinger, F. H. Atopographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    ADS  Article  Google Scholar 

  16. 16

    Bengtzelius, U., Götze, W. & Sjölander, A. Dynamics of supercooled liquids and the glass transition. J. Phys. C 17, 5915–5934 (1984).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Leutheusser, E. Dynamical model for the liquid-glass transition. Phys. Rev. A 29, 2765–2773 (1984).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Angell, C. A. Perspective on the glass transition. J. Phys. Chem. Sol. 49, 863–870 (1988).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Angell, C. A. in Complex Behavior in Glassy Systems (eds Rubi, M. & Perez-Vicente, C.) 1–21 (Springer, Berlin, (1997).

    Google Scholar 

  20. 20

    Weber, T. A. & Stillinger, F. H. Local order and structural translations in amorphous metal-metalloid alloys. Phys. Rev. B 31, 1954–1963 (1985).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Donati, C., Douglas, J. F., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. String-like cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2342 (1998).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Stillinger, F. H. & Weber, T. A. Packing structures and transitions in liquids and solids. Science 225, 983–989 (1984).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Angell, C. A.et al. in Slow Dynamics in Condensed Matter: Proc. 1st Tohwa Univ. Int. Symp. (eds Kawasaki, K., Kawakatsu, T. & Tokuyama, M.) 3–19 (AIP Conf. Proc. 316, Am. Inst. Physics, New York, (1992).

    Google Scholar 

  25. 25

    Colucci, D. M.et al. Isochoric and isobaric glass formation: similarities and differences. J. Polym. Sci. B: Polym. Phys. 35, 1561–1573 (1997).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids (Academic, London, (1986).

    Google Scholar 

  27. 27

    Fox, J. R. & Andersen, H. C. Molecular dynamics simulations of a supercooled monoatomic liquid and glass. J. Phys. Chem. 88, 4019–4027 (1984).

    CAS  Article  Google Scholar 

  28. 28

    Wahnström, G. Molecular-dynamics study of a supercooled two-component Lennard–Jones system. Phys. Rev. A 44, 3752–3764 (1991).

    ADS  Article  Google Scholar 

  29. 29

    Stoddard, S. D. & Ford, J. Numerical experiments on the stochastic behavior of a Lennard–Jones gas system. Phys. Rev. A 8, 1504–1512 (1973).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. A. Angell, S. Glotzer, F. Sciortino and H. E. Stanley for discussions. This work was supported by the US Department of Energy and the Petroleum Research Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo G. Debenedetti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sastry, S., Debenedetti, P. & Stillinger, F. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998). https://doi.org/10.1038/31189

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.