A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas

Abstract

Rhodopsin is a visual pigment ubiquitous in multicellular animals. If visual pigments have a common ancient origin, as is believed, then some unicellular organisms might also use a rhodopsin photoreceptor1,2. We show here that the unicellular alga Chlamydomonas does indeed use a rhodopsin photoreceptor. We incorporated analogues of its retinal chromophore into a blind mutant; normal photobehaviour was restored and the colour of maximum sensitivity was shifted in a manner consistent with the nature of the retinal analogue added. The data suggest that 11-cis-retinal is the natural chromophore and that the protein environment of this retinal is similar to that found in bovine rhodopsin, suggesting homology with the rhodopsins of higher organisms. This is the first demonstration of a rhodopsin photoreceptor in an alga or eukaryotic protist and also the first report of behavioural spectral shifts caused by exogenous synthetic retinals in a eukaryote. A survey of the morphology and action spectra of other protists suggests that rhodopsins may be common photoreceptors of chlorophycean, prasinophycean and dinophycean algae. Thus, Chlamydomonas represents a useful new model for studying photoreceptor cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Foster, K. W. & Smyth, R. D. Fedn Proc. 39, 2139 (1980).

  2. 2

    Foster, K. W. & Smyth, R. D. Microbiol. Rev. 44, 572–630 (1980).

  3. 3

    Ehrenberg, C. G. Die Infusionthierchen als Vollkommene Organismen, Leipzig (1838).

  4. 4

    Song, P.-S. Photochem. Photobiol. Rev. 7, 77–140 (1983).

  5. 5

    Greuet, C. Année biol. 21, 97–141 (1982).

  6. 6

    Balogh-Nair, V. & Nakanishi, K. in New Comprehensive Biochemistry Vol. 3 (ed. Tamm, Ch.) (Eisevier, Amsterdam, 1982).

  7. 7

    Balogh-Nair, V. & Nakanishi, K. Meth. Enzym. 88, 496–506 (1982).

  8. 8

    Kropf, A., Whittenberger, B. P., Goff, S. P. & Waggoner, A. S. Expl Eye Res. 17, 591–606 (1973).

  9. 9

    Motto, M. G., Sheves, M., Tsujimoto, K., Balogh-Nair, V. & Nakanishi, K. J. Am. chem. Soc. 102, 7947–7949 (1980).

  10. 10

    Schimz, A., Sperling, W., Ermann, P., Bestmann, H. J. & Hildebrand, E. Photochem. Photobiol. 38, 417–423 (1983).

  11. 11

    Schimz, A., Sperling, W., Hildebrand, E. & Kohler-Hahn, D. Photochem. Photobiol. 36, 193–196 (1982).

  12. 12

    Otto, M. K., Jayaram, M., Hamilton, R. M. & Delbruck, M. Proc. natn. Acad. Sci. U.S.A. 78, 266–269 (1981).

  13. 13

    Wang, W.-Y. Genetics 91, s134 (1979).

  14. 14

    Knowles, A. & Dartnell, H. J. in The Eye Vol. 2B (ed. Davson, H.) 76 (Academic, New York, 1977).

  15. 15

    Nakanishi, K., Balogh-Nair, V., Arnaboldi, M., Tsujimoto, K. & Honig, B. J. Am. chem. Soc. 102, 7945–7947 (1980).

  16. 16

    Oesterhelt, D. & Stoekenius, W. Nature new Biol. 233, 149–152 (1971).

  17. 17

    Huang, B., Ramanis, Z., Dutcher, S. K. & Luck, D. J. C. Cell 29, 745–753 (1982).

  18. 18

    Straley, S. C. & Bruce, V. G. Pl. Physiol. 63, 1175–1181 (1979).

  19. 19

    Goodenough, J. E., Bruce, V. G. & Carter, A. Biol. Bull. mar. biol. Lab., Woods Hole 161, 371–381 (1981).

  20. 20

    Hoops, H. J. & Witman, G. B. J. Cell Biol. 97, 902–908 (1983).

  21. 21

    Brokaw, C. J. & Luck, D. J. C. Cell Motility 4, 131–150 (1983).

  22. 22

    Nathans, J. & Hogness, D. S. Cell 34, 807–814 (1983).

  23. 23

    Nichelson-Guthrie, C. S. & Hudock, G. A. J. gen. Microbiol. 129, 159–165 (1983).

  24. 24

    Hutner, S. H., Provosoli, L., Schatz, A. & Haskins, C. P. Proc. Am. phil Soc. 94, 152–170 (1950).

  25. 25

    Eslava, A. P., Alvarez, M. I. & Cerdá-Olmedo, E. Eur. J. Biochem. 48, 617–623 (1974).

  26. 26

    Hubbard, R., Brown, P. K. & Bownds, D. Meth. Enzym. 33 C, 615–653 (1971).

  27. 27

    Arnaboldi, M., Motto, M. G., Tsujimoto, K., Balogh-Nair, V. & Nakanishi, K. J. Am. chem. Soc. 101, 7082–7086 (1979).

  28. 28

    Blatz, P. E., Dewhurst, P. B., Balasubramaniyan, V., Balasubramaniyan, P. & Lin, M. Photochem. Photobiol. 11, 1–15 (1970).

  29. 29

    Erickson, J. O. & Blatz, P. E. Vision Res. 8, 1367–1375 (1968).

  30. 30

    Tokunaga, F. & Ebrey, T. G. Biochemistry 17, 1915–1922 (1978).

  31. 31

    Sperling, W. & Schimz, A. Biophys. Struct. Mech. 6, 165–169 (1980).

  32. 32

    Azuma, M., Azuma, K. & Keto, Y. Biochim. biophys. Acta 295, 520–527 (1973).

  33. 33

    Honig, B. et al. J. Am. chem. Soc. 101, 7084–7086 (1979).

  34. 34

    Schletz, K. Z. Pflanzenphysiol 77, 189–211 (1976).

  35. 35

    Litvin, F. F., Sineshchekov, O. A. & Sineshchekov, V. A. Nature 271, 476–478 (1978).

  36. 36

    Halldal, P. Physiologia Pl. 14, 133–139 (1961).

  37. 37

    Forward, R. B. Jr J. Protozool. 21, 312–315 (1974).

  38. 38

    Lack, D. J. L. J. Cell Biol. 98, 789–794 (1984).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foster, K., Saranak, J., Patel, N. et al. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311, 756–759 (1984) doi:10.1038/311756a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.