The agonist effect of dihydropyridines on Ca channels

Article metrics

Abstract

Dihydropyridines (DHP) have great potential for clinical use because of their inotropic and vasomotor effects. The mechanism of action is unknown although Ca currents have been implicated1,2. Here we report measurements of single channel and whole cell cardiac Ca currents after application of two DHP agonists BAY K 8644 and CGP 28 392. Whole cell Ca currents from individual myocytes were increased and the 50% effective doses (ED50) were similar to those reported for contractility in rabbit aorta and guinea pig heart1 and catecholamine release from cat adrenal glands3. The measured ED50 was also consistent with the apparent dissociation constant (Kd) of a high affinity binding site present in cardiac sarcolemmal vesicles4–7. We propose that the molecular basis for these results is an increase in the probability that a single Ca channel, having opened and closed, will subsequently re-open during membrane depolarization. At high concentrations of BAY K 8644 and in the presence of 96 mM Ba, different effects are observed, primarily a marked prolongation of open time8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schramm, M., Thomas, G., Towart, R. & Franckowiak, G. Nature 303, 535–537 (1983).

  2. 2

    Glossman, H., Ferry, D. R., Lübbecke, F., Mewes, R. & Hofmann, F. Trends pharmac. Sci. 3, 431–437 (1982).

  3. 3

    Garcia, A. G. et al. Nature 309, 69–71 (1984).

  4. 4

    Janis, R. A., Rampe, D., Sarmiento, J. G. & Triggle, D. J. Biochem. biophys. Res. Commun. (in the press).

  5. 5

    Sarmiento, J. G., Janis, R. A., Rampe, D. & Triggle, D. J. Fedn Proc. 43, 448 (1984).

  6. 6

    Vaghy, P. L., Grupp, I. L., Grupp, G. & Schwartz, A. Circulation Res. (in the press).

  7. 7

    Grupp, I. L. et al. Fedn Proc. 43, 937 (1984).

  8. 8

    Hess, P., Lansman, J. B. & Tsien, R. W. Biophys. J. 45, 394a (1984).

  9. 9

    Mark, G. E. & Strasser, F. F. Expl Cell Res. 44, 217–233 (1966).

  10. 10

    Powell, T., Terrar, D. A. & Twist, V. W. J. Physiol., Lond. 302, 131–153 (1980).

  11. 11

    Taniguchi, J., Kokubun, S., Noma, A. & Irisawa, H. Jap. J. Physiol. 31, 547–558 (1981).

  12. 12

    Isenberg, G. & Klockner, U. Pflügers Arch. ges. Physciol. 395, 6–18 (1982).

  13. 13

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

  14. 14

    Johnson, E. A. & Lieberman, M. A. Rev. Physiol. 33, 479–532 (1971).

  15. 15

    Moses, R. L. & Kasten, F. H. Cell Tissue Res. 203, 173–180 (1979).

  16. 16

    Josephson, I., Sanchez-Chapula, J. & Brown, A. M. Circulation Res. 54, 157–162 (1984).

  17. 17

    Sanguinetti, M. C. & Kass, R. S. Biophys. J. 45, 394a (1984).

  18. 18

    Reuter, H., Stevens, C. F., Tsien, R. W. & Yellen, G. Nature 297, 501–504 (1983).

  19. 19

    Cachelin, A. B., de Peyer, J. E., Kokubun, S. & Reuter, H. Nature 304, 462–464 (1983).

  20. 20

    Fenwick, E. M., Marty, A. & Neher, E. J. Physiol., Lond. 331, 599–635 (1982).

  21. 21

    Hagiwara, S. and Ohmori, H. J. Physiol., Lond. 336, 649–661 (1983).

  22. 22

    Lux, H. D. & Nagy, K. Pflügers Arch. ges. Physiol. 391, 252–254 (1981).

  23. 23

    Brown, A. M., Camerer, H., Kunze, D. L. & Lux, H. D. Nature 299, 156–158 (1982).

  24. 24

    Cavalié, A., Ochi, R., Pelzer, D. & Trautwein, W. Pflügers Arch. ges. Physiol. 398, 284–297 (1983).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.