Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum


In rats, striatal neuronal destruction by so-called excitotoxic amino acids, kainic acid or ibotenic acid (IA) produce neuropathological and neurochemical changes in the basal ganglia1–4 which resemble those seen in patients with Huntington's chorea5,6. Such lesioned animals show a behavioural syndrome which is reminiscent of the cardinal symptoms of the disease7–12, accompanied by a substantial increase in local cerebral metabolic activity in several striatal target structures within the extrapyramidal motor system13–15. The study was designed to explore the potential of grafted fetal striatal neurones implanted into the IA-lesioned striatum to compensate for the structural, neurochemical, metabolic and behavioural defects of IA-lesioned rats. Extending previous studies16,17, we report here that such striatal implants can significantly ameliorate the lesion-induced locomotor hyperactivity and at least partly normalize the metabolic hyperactivity in the extrapyramidal neuronal system.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Coyle, J. T. & Schwarcz, R. Nature 263, 244–246 (1976).

    ADS  CAS  Article  Google Scholar 

  2. 2

    McGeer, E. G. & McGeer, P. L. Nature 263, 517–519 (1976).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Schwarcz, R. & Coyle, J. T. Brain Res. 127, 235–249 (1977).

    CAS  Article  Google Scholar 

  4. 4

    Schwarcz, R. et al. Expl Brain Res. 37, 199–216 (1979).

    CAS  Article  Google Scholar 

  5. 5

    Bruyn, G. W. Prog. Brain Res. 55, 445–464 (1982).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bird, E. D. A. Rev. Pharmac. Tox. 20, 533–551 (1980).

    CAS  Article  Google Scholar 

  7. 7

    Mason, S. T. & Fibiger, H. C. Brain Res. 155, 313–329 (1978).

    CAS  Article  Google Scholar 

  8. 8

    Mason, S. T. & Fibiger, H. C. Neuropharmacology 18, 403–407 (1979).

    CAS  Article  Google Scholar 

  9. 9

    Sanberg, P. R. & Fibiger, H. C. Expl Neurol. 66, 444–466 (1979).

    CAS  Article  Google Scholar 

  10. 10

    Dunnett, S. B. & Iversen, S. D. Behav. Brain Res. 2, 189–209 (1981).

    CAS  Article  Google Scholar 

  11. 11

    Dunnett, S. B. & Iversen, S. D. Behav. Brain Res. 1, 497–506 (1980).

    CAS  Article  Google Scholar 

  12. 12

    Pisa, M., Sanberg, P. R. & Fibiger, H. C. Expl Neurol. 74, 633–653 (1981).

    CAS  Article  Google Scholar 

  13. 13

    Kimura, H., McGeer, E. G. & McGeer, P. L. J. neural Transmission Suppl. 16, 103–109 (1980).

    CAS  Google Scholar 

  14. 14

    Wooten, G. F. & Collins, R. C. Brain Res. 201, 173–184 (1980).

    CAS  Article  Google Scholar 

  15. 15

    Kelly, P. A. T., Graham, D. I. & McCulloch, J. Brain Res. 233, 157–172 (1982).

    CAS  Article  Google Scholar 

  16. 16

    Schmidt, R. H., Björklund, A. & Stenevi, U. Brain Res. 218, 347–356 (1981).

    CAS  Article  Google Scholar 

  17. 17

    Deckel, A. W., Robinson, R. G., Coyle, J. T. & Sanberg, P. R. Eur. J. Pharmac. 93, 287–288 (1983).

    CAS  Article  Google Scholar 

  18. 18

    Sokoloff, L. et al. J. Neurochem. 28, 897–916 (1977).

    CAS  Article  Google Scholar 

  19. 19

    Fonnum, F., Storm-Mathisen, J. & Walberg, F. Brain Res. 20, 259–275 (1970).

    CAS  Article  Google Scholar 

  20. 20

    Krammer, E. B. Brain Res. 196, 209–219 (1980).

    CAS  Article  Google Scholar 

  21. 21

    Dawbarn, D. et al. Brain Res. (submitted).

  22. 22

    Glick, S. D. & Cox, R. D. Brain Res. 150, 149–161 (1978).

    CAS  Article  Google Scholar 

  23. 23

    Björklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E. & Iversen, S. D. Brain Res. 199, 307–333 (1980).

    Article  Google Scholar 

  24. 24

    Freed, W. J. et al. Ann. Neurol. 8, 510–519 (1980).

    CAS  Article  Google Scholar 

  25. 25

    Björklund, A., Stenevi, U., Dunnett, S. B. & Iversen, S. D. Nature 289, 497–499 (1981).

    ADS  Article  Google Scholar 

  26. 26

    Freed, W. J. et al. Nature 292, 351–352 (1981).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Björklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B. & Gage, F. H. Acta physiol. scand. Suppl. 522, 1–8 (1983).

    PubMed  Google Scholar 

  28. 28

    Dunnett, S. B., Björklund, A. & Stenevi, U. Trends Neurosci. 6, 266–270 (1983).

    CAS  Article  Google Scholar 

  29. 29

    Kelly, P. A. T. & McCulloch, J. Br. J. Pharmac. 76, 290 (1982).

    Google Scholar 

  30. 30

    Mogenson, G. J. & Nielsen, M. A. Brain Res. Bull. 11, 309–314 (1983).

    CAS  Article  Google Scholar 

  31. 31

    Schwartz, W. J. & Sharp, S. R. J. comp. Neurol. 177, 335–360 (1978).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Isacson, O., Brundin, P., Kelly, P. et al. Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature 311, 458–460 (1984).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing