Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for neurotensin as a non-adrenergic, non-cholinergic neurotransmitter in guinea pig ileum

Abstract

Neurotensin is a 13-amino acid peptide that is widely distributed in central and peripheral tissues of various mammalian species1. In peripheral tissues, the highest concentration of neurotensin-like immunoreactivity is found in the ileum, where it is present in endocrine-like cells and nerve fibres2–4. The longitudinal smooth muscle layer of the guinea pig ileum, where neurotensin has both a direct relaxant and an indirect contractile action, has been used extensively as a biological assay system for neurotensin5. We report here that the majority of specific 3H-neurotensin binding sites is present in the guinea pig ileum circular smooth muscle layer, which is known to be innervated by a large proportion of the ileal non-adrenergic inhibitory nerves6. Neurotensin produces a dose-dependent, tetrodotoxin-resistant relaxation, whereas the relaxation produced by field stimulation of the inhibitory nerves is frequency-dependent and tetrodotoxin-sensitive. The calcium-dependent potassium channel blocker apamin7,8 inhibits both the neurotensin- and nerve stimulation-induced muscle relaxation. Incubation of the circular smooth muscle preparation with a neurotensin antiserum substantially inhibited the nerve stimulation-induced relaxation, indicating a direct relationship between the effects of neurotensin and of nerve stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nemeroff, C. F., Luttinger, D. & Prange, A. J. Handbk Psychopharmac. 16, 363–466 (1983).

    Article  CAS  Google Scholar 

  2. Sundler, F., Håkanson, R., Leander, S. & Uddman, D. Ann. N. Y. Acad. Sci. 400, 94–104 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Schultzberg, M. et al. Neuroscience 5, 689–744 (1980).

    Article  CAS  Google Scholar 

  4. Reinecke, M., Forssmann, W. G., Thiekötter, G. & Triepel, J. Neurosci. Lett. 37, 37–42 (1983).

    Article  CAS  Google Scholar 

  5. Kitabgi, P. Ann. N. Y. Acad. Sci. 400, 37–55 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Hirst, G. D. S. & McKirdy, H. C. J. Physiol., Lond. 238, 129–143 (1974).

    Article  CAS  Google Scholar 

  7. Vladimirova, A. I. & Shuba, M. F. Neurofiziologija 10, 295–299 (1978).

    CAS  Google Scholar 

  8. Banks, B. E. C. et al. Nature 282, 415–417 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Harry, J. Br. J. Pharmac. 20, 399–417 (1963).

    CAS  Google Scholar 

  10. Emson, P. C., Goedert, M., Williams, B. J., Ninkovic, M. & Hunt, S. P. Ann. N. Y. Acad. Sci. 400, 198–215 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Carraway, R. & Ferris, C. F. J. biol. Chem. 258, 2475–2479 (1983).

    CAS  PubMed  Google Scholar 

  12. Goedert, M., Schwartz, W. N. & Williams, B. J. Brain Res. (submitted).

  13. Bauer, V. & Kuriyama, H. J. Physiol., Lond. 330, 95–110 (1982).

    Article  CAS  Google Scholar 

  14. Bauer, V. & Kuriyama, H. J. Physiol., Lond. 332, 375–391 (1982).

    Article  CAS  Google Scholar 

  15. Kitabgi, P. & Vincent, J. P. Eur. J. Pharmac. 74, 311–318 (1981).

    Article  CAS  Google Scholar 

  16. Huidobro-Toro, J. P. & Yoshimura, K. Br. J. Pharmac. 80, 645–653 (1983).

    Article  CAS  Google Scholar 

  17. Arimura, A., Debeljuk, L. & Schally, A. V. Endocrinology 95, 323–325 (1974).

    Article  CAS  Google Scholar 

  18. Arimura, A., Smith, W. D. & Schally, A. V. Endocrinology 98, 540–543 (1976).

    Article  CAS  Google Scholar 

  19. Rivier, C., Rivier, J. & Vale, W. Science 218, 337–339 (1982).

    Article  ADS  Google Scholar 

  20. Goyal, R. K., Rattan, S. & Said, S. I. Nature 288, 378–380 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Matsuzaki, Y., Hamasaki, Y. & Said, S. I. Science 210, 1252–1253 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Lundberg, J. M. Acta physiol. scand. Suppl. 496, 1–57 (1981).

    CAS  PubMed  Google Scholar 

  23. Bannon, M. J. et al. Nature 307, 791–792 (1983).

    Article  ADS  Google Scholar 

  24. Han, J. S. & Xie, G. X. Pain 18, 367–376 (1984).

    Article  CAS  Google Scholar 

  25. Goedert, M., Pittaway, K., Williams, B. J. & Emson, P. C. Brain Res. 304, 71–81 (1984).

    Article  CAS  Google Scholar 

  26. Ninkovic, M., Hunt, S. P. & Kelly, J. S. Brain Res. 230, 111–119 (1981).

    Article  CAS  Google Scholar 

  27. Lowry, D. H., Rosebrough, N. H., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  28. Burn, J. H. Biological Standardization (Oxford University Press, 1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goedert, M., Hunter, J. & Ninkovic, M. Evidence for neurotensin as a non-adrenergic, non-cholinergic neurotransmitter in guinea pig ileum. Nature 311, 59–62 (1984). https://doi.org/10.1038/311059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing