Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monoclonal antibody production by receptor-mediated electrically induced cell fusion

Abstract

Fusion of myeloma cells and B lymphocytes to form hybridomas which produce monoclonal antibodies has been a major advance1–3, but the poor efficiency and randomness of viral or polyethylene glycol fusion techniques generally gives poor yields of specific, high affinity antibodies. High voltage electrical fields with dielectrophoresis to ensure cell alignment can fuse a limited number of cells under direct microscopic examination4–9, but it is not possible to identify B-cells destined to secrete relevant antibodies. However, B-cells express, on their surface, antigen receptor immunoglobulins of the same antigenic specificity as the secreted antibodies. Binding of antigen to surface immunoglobulins stimulates proliferation and differentiation of B-cells into plasma cells. Here we report the use of the selective, high affinity interaction of antigen with surface immunoglobulins on B-cells to facilitate a close adherence to myeloma cells. The antigen, covalently conjugated to avidin, binds to the surface immunoglobulins on B-cells. This B-cell–antigen–avidin complex binds to biotin covalently attached to the surface of myeloma cells. An intense electric field across a bulk cell suspension then produces selective fusion of cells in contact, that is, of myeloma cells with B-cells which make the appropriate antibody. We have used this technique with several antigens, and all resultant hybridomas secrete appropriate antibodies with very high affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohler, G. & Milstein, C. Nature 256, 495–497 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Kohler, G. & Milstein, C. Eur. J. Pharmac. 6, 511–519 (1976).

    CAS  Google Scholar 

  3. Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W. & Howard, J. C. Nature 266, 550–552 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Zimmermann, U. & Pilwat, G. Sixth int. Biophys. Cong. Kyoto Abstr. IV-19(H), 140 (1978).

  5. Neumann, E., Gerisch, G. & Opatz, K. Naturwissenschaften 67, 414–415 (1980).

    Article  ADS  Google Scholar 

  6. Weber, H., Forster, W., Berg, H. & Jacob, H.-E. Curr. Genet. 4, 165–166 (1981).

    Article  CAS  Google Scholar 

  7. Teissie, J., Knutson, V. P., Tsong, T. Y. & Lane, M. D. Science 216, 537–538 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Pohl, H. A. Dielectrophoresis (Cambridge University Press, 1978).

    Google Scholar 

  9. Zimmermann, U. Biochim. biophys. Acta 694, 227–277 (1982).

    Article  CAS  Google Scholar 

  10. Kinosita, K. & Tsong, T. Y. Proc. natn. Acad. Sci. U.S.A. 74, 1923–1927 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Tsong, T. Y. Biosci. Rep. 3, 487–505 (1983).

    Article  CAS  Google Scholar 

  12. Littlefield, D. W. Science 145, 709–710 (1964).

    Article  ADS  CAS  Google Scholar 

  13. El-Dorry, H. A. et al. J. biol. Chem. 257, 14128–14133 (1982).

    CAS  PubMed  Google Scholar 

  14. Galfre, G. & Milstein, C. Meth. Enzym. 73, 1–46 (1981).

    Google Scholar 

  15. Fricker, L. D. & Snyder, S. H. J. biol. Chem. 258, 10950–10955 (1983).

    CAS  PubMed  Google Scholar 

  16. Snyder, S. H. Science 224, 22–31 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Vienken, J. & Zimmermann, U. FEBS Lett. 137, 11–13 (1982).

    Article  CAS  Google Scholar 

  18. Das, M. & Soffer, R. L. Biochemistry 15, 5088–5094 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, M., Tsong, T., Conrad, M. et al. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310, 792–794 (1984). https://doi.org/10.1038/310792a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310792a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing