Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heavily methylated amplified DNA in transformants of Neurospora crassa

Abstract

Substantial DNA methylation occurs in higher eukaryotes and in some cases affects gene expression (for reviews see refs 1–4). However, the genomes of some fungi5,6, Drosophila7 and other lower eukaryotes5,8 have an extremely low 5-methylcytosine content, suggesting4,9 that DNA methylation might not have a general role in gene control. We have now found heavy methylation of transforming DNA which has become stably amplified in complex tandem arrays in the fungus Neurospora crassa. Rearranged amplified arrays of this type have not previously been found in fungi, but resemble those of animal systems10–16. Our results demonstrate that this lower eukaryote normally maintains only very low levels of 5-methylcytosine in its genome, but possesses a mechanism for substantial methylation of DNA de novo. This heavy methylation, which lacks the preference for CG sequences found in higher eukaryotes1–4, does not apparently affect gene expression and might be involved in a recombination or repair process for which the amplified DNA is a target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Razin, A. & Riggs, A. D. Science 210, 604–610 (1980).

    Article  ADS  Google Scholar 

  2. Ehrlich, M. & Wang, R. Y.-H. Science 212, 1350–1357 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Adams, R. L. P. & Burdon, R. H. CRC Crit. Rev. Biochem. 13, 349–384 (1982).

    Article  CAS  Google Scholar 

  4. Doerfler, W. A. Rev. Biochem. 52, 93–124 (1983).

    Article  CAS  Google Scholar 

  5. Hattman, S., Kenny, C., Berger, L. & Pratt, K. J. Bact. 135, 1156–1157 (1978).

    CAS  PubMed  Google Scholar 

  6. Feher, Z., Kiss, A. & Venetianer, P. Nature 302, 266–268 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Achwal, C. W., Ganguly, P. & Chandra, H. S. EMBO J. 3, 263–266 (1984).

    Article  CAS  Google Scholar 

  8. Urieli-Shoval, S., Gruenbaum, Y., Sedat, J. & Razin, A. FEBS Lett. 146, 148–152 (1982).

    Article  CAS  Google Scholar 

  9. Bird, A. P. Nature 307, 503–504 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Schimke, R. T. Gene Amplification (Cold Spring Harbor Laboratory, New York, 1982).

  11. Beach, L. R. & Palmiter, R. D. Proc. natn. Acad. Sci. U.S.A. 78, 2110–2114 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Spradling, A. C. Cell 27, 193–201 (1981).

    Article  CAS  Google Scholar 

  13. Dalla-Favera, R., Wong-Staal, F. & Gallo, R. C. Nature 299, 61–63 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Schwab, M., Alitalo, K., Varmus, H. E. & Bishop, J. M. Nature 303, 497–501 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Roberts, J. M. & Axel, R. Cell 29, 109–119 (1982).

    Article  CAS  Google Scholar 

  16. Roberts, J. M., Buck, L. B. & Axel, R. Cell 33, 53–63 (1983).

    Article  CAS  Google Scholar 

  17. Kinnaird, J. H. & Fincham, J. R. S. Gene 26, 253–260 (1983).

    Article  CAS  Google Scholar 

  18. Kinnaird, J. H., Keighren, M. A., Kinsey, J. A., Eaton, M. & Fincham, J. R. S. Gene 20, 387–396 (1982).

    Article  CAS  Google Scholar 

  19. Kinsey, J. A. & Rambosek, J. A. Molec. cell. Biol. 4, 117–122 (1984).

    Article  CAS  Google Scholar 

  20. Case, M. E., Schweizer, E. M., Kushner, S. R. & Giles, N. H. Proc. natn. Acad. Sci U.S.A. 76, 5259–5263 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Case, M. E. in Genetic Engineering of Microorganisms for Chemicals (ed. Hollaender, A.) 87–100 (Plenum, New York, 1981).

    Google Scholar 

  22. Buxton, F. P. & Radford, A. Molec. gen. Genet. 190, 403–405 (1983).

    Article  CAS  Google Scholar 

  23. Perkins, D. D. & Barry, E. C. A. Rev. Genet. 11, 133–225 (1977).

    Article  Google Scholar 

  24. Bird, A. P. & Taggart, M. H. Nucleic Acids Res. 8, 1485–1497 (1980).

    Article  CAS  Google Scholar 

  25. Cooper, D. N., Taggart, M. H. & Bird, A. P. Nucleic Acids Res. 11, 647–658 (1983).

    Article  CAS  Google Scholar 

  26. Drahovsky, D., Lacko, I. & Wacker, A. Biochim. biophys. Acta 447, 139–143 (1976).

    Article  CAS  Google Scholar 

  27. Hilliard, J. K. & Sneider, T. W. Nucleic Acids Res. 2, 809–819 (1975).

    Article  CAS  Google Scholar 

  28. Ryan, A. M. & Borek, E. Biochim. biophys. Acta 240, 203–214 (1971).

    Article  CAS  Google Scholar 

  29. Korba, B. E. & Hays, J. B. J. molec. Biol. 157, 213–235 (1982).

    Article  CAS  Google Scholar 

  30. Pollack, Y., Stein, R., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 77, 6463–6467 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Tantravahi, U., Guntaka, R. V., Erlanger, B. F. & Miller, O. J. Proc. natn. Acad. Sci. U.S.A. 78, 489–493 (1981).

    Article  ADS  CAS  Google Scholar 

  32. Jimenez, A. & Davies, J. Nature 287, 869–871 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Wootton, J. C., Fraser, M. J. & Baron, A. J. Neurospora Newslett. 27, 33 (1980).

    Google Scholar 

  34. Schweizer, M., Case, M. E., Dykstra, C. C., Giles, N. H. & Kushner, S. R. Proc. natn. Acad. Sci. U.S.A. 78, 5086–5090 (1981).

    Article  ADS  CAS  Google Scholar 

  35. Vogel, H. J. Am. Nat. 98, 435–440 (1964).

    Article  CAS  Google Scholar 

  36. Metzenberg, R. L. & Baish, T. J. Neurospora Newslett. 28, 20–21 (1981).

    Google Scholar 

  37. Stevens, J. N. & Metzenberg, R. L. Neurospora Newslett. 29, 27–28 (1982).

    Google Scholar 

  38. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  39. Hohn, B. Meth. Enzym. 68, 299–309 (1979).

    Article  CAS  Google Scholar 

  40. McClelland, M. Nucleic Acids Res. 11, rl69–rl73 (1983).

    Article  Google Scholar 

  41. Busslinger, M., de Boer, E., Wright, S., Grosveld, F. G. & Flavell, R. A. Nucleic Acids Res. 11, 3569–3571 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bull, J., Wootton, J. Heavily methylated amplified DNA in transformants of Neurospora crassa. Nature 310, 701–704 (1984). https://doi.org/10.1038/310701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310701a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing