Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low-level radio flares from Cygnus X-3

Abstract

Cygnus X-3 is a poorly understood but interesting galactic X-ray source. It is unusual in that it shows variable low-state (Sv<1 Jy) radio emission1 as well as spectacular radio flares (Sv20 Jy). The spectacular flares have long been interpreted as synchrotron emission from an expanding source2; more recent work3 implies that Cyg X-3 may be one of the few identified radio jets in the Galaxy. Flux-density variations with a period of 4.8 h have been discovered at X-ray4 and IR5 wavelengths, and possibly at γ-ray energies6,7 from 108 eV to 1016 eV. The X-ray emission is probably produced in a binary system composed of a low-mass star orbiting a compact object with an accretion disk and an accretion disk corona8. As interstellar absorption9 (Av = 19) precludes study of the optical emission, the applicability of this model to Cyg X-3 rests heavily on analogy with other sources with similar X-ray properties (such as, 4U1822-37 and 4U2129+47). We report here observations with the Very Large Array (VLA) of Cyg X-3 at several radio wavelengths which show that the radio emission in its low state may be interpreted as arising entirely from the superposition of a series of flares that are wavelength dependent with an apparent period near the 4.8-h X-ray period10. A model of the source, in which each flare represents the injection of relativistic particles into a small volume which subsequently expands at constant velocity, is qualitatively consistent with the data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Braes, L. L. E. & Miley, G. K. Nature 237, 506 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Gregory, P. C. et al. Nature phys. Sci. 239, 114–117 (1972).

    Article  ADS  Google Scholar 

  3. Geldzahler, B. J. et al. Astrophys. J. Lett. 273, L65–L69 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Brinkman, A. et al. IAU Circ. No. 2446 (1972).

  5. Becklin, E. E. et al. Nature 245, 302–304 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Lamb, R. C., Fichtel, C. E., Hartman, R. C., Kniffen, D. A. & Thompson, D. J. Astrophys. J. Lett. 212, L63–L66 (1977).

    Article  ADS  Google Scholar 

  7. Samorski, M. & Stamm, W. Astrophys. J. Lett. 268, L17–L21 (1983).

    Article  ADS  CAS  Google Scholar 

  8. White, N. E. & Holt, S. S. Astrophys. J. 257, 318–337 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Weekes, T. C. & Geary, J. C. Publ. astr. Soc. Pacif. 94, 708–712 (1982).

    Article  ADS  Google Scholar 

  10. Molnar, L. A., Reid, M. J. & Grindlay, J. E. IAU Circ. No. 3885 (1983).

  11. Seaquist, E. R. & Gregory, P. C. Astrophys. Lett. 18, 65–68 (1977).

    ADS  Google Scholar 

  12. Vestrand, W. T. Astrophys. J. 271, 304–312 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Hjellming, R. M., Hermann, M. & Webster, E. Nature 237, 507–508 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Hjellming, R. M. & Balick, B. Nature 239, 443–446 (1972).

    Article  ADS  Google Scholar 

  15. Mason, K. O. et al. Astrophys. J. 207, 78–87 (1976).

    Article  ADS  Google Scholar 

  16. Geldzahler, B. J., Kellermann, K. I. & Shaffer, D. B. Astr. J. 84, 186–188 (1979).

    Article  ADS  Google Scholar 

  17. Thompson, A. R., Clark, B. G., Wade, C. M. & Napier, P. J. Astrophys. J. Suppl. 44, 151–167 (1980).

    Article  ADS  Google Scholar 

  18. Danese, L., DeZotti, G. & diTullio, G. Astr. Astrophys. 82, 322–327 (1980).

    ADS  Google Scholar 

  19. Shklovskii, I. S. Soviet. Astr. 9, 22–23 (1965).

    ADS  Google Scholar 

  20. van der Laan, H. Nature 211, 1131–1133 (1966).

    Article  ADS  Google Scholar 

  21. Kellermann, K. I. & Pauliny-Toth, I. I. K. A. Rev. Astr. Astrophys. 6, 417–448 (1968).

    Article  ADS  Google Scholar 

  22. Dickey, J. M. Astrophys. J. Lett. 273, L71–L73 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Cawley, M. F., Gibbs, K. & Weekes, T. C. Proc. 18th int. Cosmic Ray Conf. (in the press).

  24. Nicolson, G. D., Feast, M. W. & Glass, I. S. Mon. Not. R. astr. Soc. 191, 293–299 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Taylor, A. R. & Gregory, P. C. Astrophys. J. 255, 210–216 (1982).

    Article  ADS  Google Scholar 

  26. Grindlay, J. E. et al. Astrophys. J. 277, 286–295 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Band, D. L. & Grindlay, J. E. Astrophys. J. (submitted).

  28. Bonnet-Bidaud, J. M. & van der Klis, M. Astr. Astrophys. 101, 299–304 (1981).

    ADS  Google Scholar 

  29. van der Klis, M. & Bonnet-Bidaud, J. M. Astr. Astrophys. 95, L5–L7 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molnar, L., Reid, M. & Grindlay, J. Low-level radio flares from Cygnus X-3. Nature 310, 662–665 (1984). https://doi.org/10.1038/310662a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310662a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing