Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human proα1(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons

Abstract

The collagens represent an interesting example of a structurally related but genetically distinct family of proteins1. Type I, the most abundant of the vertebrate collagens, comprises two proα1(I) chains and one proα2(I) chain, each containing terminal propeptides and a central domain of 338 (Gly, X, Y) repeats. The structure of the chicken proα2(I) gene shows an intriguing relationship between exon organization and the arrangement of (Gly, X, Y) repeats (see ref. 2 for review). This has led to the suggestion3 that the collagens evolved from a common ancestral unit of 54 base pairs (bp). Here we present the structure of the entire human proα1(I) gene and compare this with the chicken proα2(I). The exon arrangement of the two genes is remarkably similar, although the human proα1(I) is more compact because of the shorter length of its introns. The data strongly support the notion that the type I genes have evolved from an ancestral multi-exon unit, and that once the gene was translated, a strong evolutionary pressure caused it to maintain this elaborate structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bornstein, P. & Sage, H. A. Rev. Biochem. 49, 957–1003 (1980).

    Article  CAS  Google Scholar 

  2. Tate, V., Finer, M., Boedtker, H. & Doty, P. Cold Spring Harb. Symp. quant. Biol. 47, 1039–1049 (1982).

    Article  CAS  Google Scholar 

  3. Yamada, Y. et al. Cell 22, 887–892.

  4. Sandell, L. et al. J. biol. Chem. 258, 11617–11621 (1982).

    Google Scholar 

  5. Yamada, Y. et al. J. biol. Chem. 258, 2758–2761 (1983).

    CAS  PubMed  Google Scholar 

  6. Monson, J. M. et al. Molec. cell. Biol. 2, 1362–1371 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fietzek, P. P. et al. Proc. natn. Acad. Sci. U.S.A. 74, 84–86 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Piez, K. A. in Biochemistry of Collagen (eds Ramachandran, G. N. & Reddi, A. H.) 1–84 (Plenum, New York, 1976).

    Book  Google Scholar 

  9. Fietzek, P. P. & Kuhn, K. Int. Rev. Connective Tissue Res. 7, 1–60 (1976).

    Article  CAS  Google Scholar 

  10. Tate, V. et al. Nucleic Acids Res. 11, 91–103 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harbers, K. et al. Proc. natn. Acad. Sci. U.S.A. 81, 1504–1508 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Pesciotta, E. M. et al. Biochemistry 19, 2447–2454 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Yamada, Y. et al. J. biol. Chem. 258, 14914–14919 (1983).

    CAS  PubMed  Google Scholar 

  14. Timpl, R. & Glanville, R. W. Clin. Orthop. Related Res. 158, 224–242 (1981).

    CAS  Google Scholar 

  15. Huerre, C. et al. Proc. natn. Acad. Sci. U.S.A. 79, 6627–6630 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Bernard, M. P. et al. Biochemistry 22, 5213–5223 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Ohta, T. & Dover, G. A. Proc. natn. Acad. Sci. U.S.A. 80, 4079–4083 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Myers, J. C. et al. J. biol. Chem. 258, 10128–10135 (1983).

    CAS  PubMed  Google Scholar 

  19. Chu, M.-L. et al. Nucleic Acids Res. 10, 5424–5434 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, ML., de Wet, W., Bernard, M. et al. Human proα1(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature 310, 337–340 (1984). https://doi.org/10.1038/310337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing