Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polymorphism and absence of Leu-enkephalin sequences in proenkephalin genes in Xenopus laevis

Abstract

The structures of the genes coding for the opioid peptide precursors proopiomelanocortin, proenkephalin (proenkephalin A) and prodynorphin (proenkephalin B), are known for some mammalian species1–7. To gain insight into the evolutionary history of these precursors, we have examined the proenkephalin gene in the South African clawed toad, Xenopus laevis, which diverged from the principal line of vertebrate evolution some 350 Myr ago. The human proenkephalin gene consists of four exons, of which the main exon (exon IV) contains all known biologically active peptides—six Met-enkephalin sequences and one Leu-enkephalin sequence5,6. We report here the primary structures of the putative main exons of two proenkephalin genes in X. laevis, each of which codes for seven Met-enkephalin sequences but no Leu-enkephalin, indicating that Met-enkephalin preceded Leu-enkephalin in the evolution of the proenkephalin gene. The organization of the main exons of the toad genes is remarkably similar to that of the human gene and conserved regions provide evidence for functionally significant structures. We also detect a polymorphism in one of the toad proenkephalin genes, mapping 1.5 kilobases (kb) 5′ of the main exon; it is caused by an insertion/deletion of a 1-kb repetitive sequence which has the characteristics of a transposable element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakanishi, S. et al. Eur. J. Biochem. 115, 429–438 (1981).

    Article  CAS  Google Scholar 

  2. Cochet, M., Chang, A. C. Y. & Cohen, S. N. Nature 297, 335–339 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Whitfeld, P. L., Seeburg, P. H. & Shine, J. DNA 1, 133–143 (1982).

    Article  CAS  Google Scholar 

  4. Notake, M. et al. FEBS Lett. 156, 67–71 (1983).

    Article  CAS  Google Scholar 

  5. Noda, M. et al. Nature 297, 431–434 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Comb, M., Rosen, H., Seeburg, P. H., Adelman, J. & Herbert, E. DNA 2, 213–229 (1983).

    Article  CAS  Google Scholar 

  7. Horikawa, S. et al. Nature 306, 611–614 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  9. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Kilpatrick, D. L. et al. Proc. natn. Acad. Sci. U.S.A. 78, 3265–3268 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Kilpatrick, D. L., Howells, R. D., Lahm, H. W. & Udenfriend, S. Proc. natn. Acad. Sci. U.S.A. 80, 5772–5775 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Van Ooyen, A. van den Berg, J., Mantel, N. & Weismann, C. Science 206, 337–344 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Ordahl, C. P. & Cooper, T. A. Nature 303, 348–349 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Widmer, H. J., Andres, A.C., Niessing, J., Hosbach, H. A. & Weber, R. Devl Biol. 88, 325–332 (1981).

    Article  CAS  Google Scholar 

  15. May, F. E. B., Westley, B. R., Wyler, T. & Weber, R. J. molec. Biol. 168, 229–249 (1983).

    Article  CAS  Google Scholar 

  16. Germond, J. E. et al. Nucleic Acids Res. 11, 2979–2997 (1983).

    Article  CAS  Google Scholar 

  17. Bisbee, C. A. Baker, M. A., Wilson, A. C., Hadji-Azimi, I. & Fischberg, M. Science 195, 785–787 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Thiébaud, C. H. & Fischberg, M. Chromosoma 59, 253–257 (1977).

    Article  Google Scholar 

  19. Kleckner, N. A. Rev. Genet. 15, 341–404 (1981).

    Article  CAS  Google Scholar 

  20. Galli, G., Hofstetter, H. & Birnstiel, M. L. Nature 294, 626–631 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Traboni, C., Ciliberto, G. & Corteso, R. EMBO J. 1, 415–420 (1982).

    Article  CAS  Google Scholar 

  22. Kay, B. K. & Dawid, I. B. J. molec. Biol. 170, 583–596 (1983).

    Article  CAS  Google Scholar 

  23. Davidson, E. H. & Britten, R. J. Science 204, 1052–1059 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Sanger, F., Nickleu, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Comb, M., Seeburg, P. H., Adelman, J., Eiden, L. & Herbert, E. Nature 295, 663–666 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Noda, M. et al. Nature 295, 202–206 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, G., Herbert, E. Polymorphism and absence of Leu-enkephalin sequences in proenkephalin genes in Xenopus laevis. Nature 310, 251–254 (1984). https://doi.org/10.1038/310251a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310251a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing