Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins

Abstract

Several human tumour cell lines contain genes that can transform NIH 3T3 cells into malignant cells. Certain genes have been classified as members of the ras oncogene family, namely, Ha-ras, Ki-ras or N-ras1–3. The proteins encoded by the ras family are generally small (Ha-ras, for example, encodes a protein of molecular weight 21,000 named p21), and are associated with the inner surface of the plasma membrane. The only known biochemical property common to all forms of the ras proteins is the ability to bind guanine nucleotides, a property which may be closely related to the transforming ability of ras proteins4,5. A GTP-dependent, apparent autophosphorylation (on threonine 59) activity has been identified only in the case of the v-Ha-ras protein6. Although the role of these biochemical activities in the transformation process remains unclear, we have initiated studies to determine the possible biochemical interactions of ras proteins with other membrane components. We report here the evidence that epidermal growth factor enhances the guanine nucleotide binding activity of activated c-Ha-ras or v-Ha-ras p21, and phosphorylation of v-Ha-ras p21, suggesting that some mitogenic growth factors may regulate those activities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Der, C. J., Krontiris, T. G. & Cooper, G. M. Proc. natn. Acad. Sci. U.S.A. 79, 3637–3640 (1982).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Nature 297, 474–478 (1982).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Shimizu, K. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2112–2116 (1983).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Papageorge, A., Lowy, D. & Scolnick, E. J. Virol. 44, 509–519 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Proc. natn. Acad. Sci. U.S.A. 76, 5355–5359 (1979).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Shih, T. Y., Papageorge, A. G., Stockes, P. E., Weeks, M. O. & Scolnick, E. M. Nature 287, 686–691 (1980).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Eckhart, W., Hutchinson, M. A. & Hunter, T. Cell 18, 925–933 (1979).

    CAS  Article  Google Scholar 

  8. 8

    Chambard, J.-C., Franchi, A., LeCam, A. & Pouyssegur, J. J. biol. Chem. 258, 1706–1713 (1983).

    CAS  PubMed  Google Scholar 

  9. 9

    Ruley, H. E. Nature 304, 602–606 (1983).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596–602 (1983).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fisher, P. B., Boersig, M. R., Graham, G. M. & Weinstein, I. B. J. cell. Physiol. 114, 365–370 (1983).

    CAS  Article  Google Scholar 

  12. 12

    Todaro, G. J., DeLarco, J. E. & Cohen, S. Nature 264, 26–31 (1976).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Anzano, M. A., Roberts, A. B., Smith, J. M., Sporn, M. B. & DeLarco, J. E. Proc. natn. Acad. Sci. U.S.A. 80, 6264–6268 (1983).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Segawa, K. & Ito, Y. Nature 304, 742–744 (1983).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Downward, J. et al. Nature 307, 521–527 (1984).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Waterfield, M. D. et al. Nature 304, 35–39 (1983).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    CAS  Article  Google Scholar 

  18. 18

    Kamata, T. K. & Feramisco, J. R. in Cancer Cells Vol. 1 (eds Levine, A., Toppe, W., Van de Woude, G. & Watson, J. D.) 11–16 (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  19. 19

    Gilman, A. G. Cell 36, 577–579 (1984).

    CAS  Article  Google Scholar 

  20. 20

    Finkel, T. & Cooper, G. M. Cell 36, 1115–1121 (1984).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamata, T., Feramisco, J. Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature 310, 147–150 (1984). https://doi.org/10.1038/310147a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing